ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2

Exercise 3.2

Question 1

Sol :
Given : x-y=8..(i)
xy=5...(ii)
Squaring both sides in equation (i)
∴(x-y)2=82
⇒x2-2.xy+y2=64
⇒x2-2(5)+y2=64
⇒x2+y2=64+10
⇒x2+y2=74

Question 2

Sol :
⇒Given : x+y=10...(i)
⇒xy=21....(ii)
Squaring both sides in equation (i)
⇒(x+y)2=102
⇒x2+2xy+y2=100
⇒x2+2(21)+y2=100
⇒x2+42+y2=100
⇒x2+y2=100-42
⇒x2+y2=58
2(x2+y2)=2×58=116

Question 3

Sol :
⇒Given : 2a+3b=7..(i)
⇒ab=2....(ii)
Squaring both sides in equal (i)
⇒(2a+3b)2=72
⇒(2a)2+2.2a+3b+(3b)2=49
⇒4a2+12ab+9b2=49
⇒4a2+12(2)+9b2=49
⇒4a2+24+9b2=49
⇒4a2+9b2=49-24
⇒4a2+9b2=25

Question 4

Sol :
⇒Given : 3x-4y=16...(i)
⇒xy=4..(ii)
Squaring on both sides in equation (i)
⇒(3x-4y)2=162
⇒(3x)2-2.3x.4y+(4y)2=256
⇒9x2-24xy+16y2=256
⇒9x2-24(4)+16y2=256
⇒9x2-96+16y2=256
⇒9x2+16y2=256+96
⇒9x2+16y2=352

Question 5

Sol :
⇒Given : x+y=8...(i)
⇒x-y=2...(ii)
Since we know that
⇒2(x)2+2(y)2=(x+y)2+(x-y)2
From (i) ⇒Squaring on both sides
(x+y)2=82
=64
From (ii) ⇒Squaring on both sides
(x-y)2=22
=4
∴2(x2+y2)=(x+y)2+(x-y)2
=64+4
=68

Question 6

Sol :
Given : a2+b2=13...(i)
ab=6...(ii)

(i) a+b
∴(a+b)2=a2+2ab+b2
=a2+b2+2ab
=13+2(6)
=13+12

(a+b)2=25
a+b=√25
a+b=5

(ii) a-b
∴(a-b)2=a2-2ab+b2
=a2+b2-2ab
=13-2(6)
=13-12
(a-b)2=1
(a-b)=√1
∴a-b=1

Question 7

Sol :
Given : a+b=4...(i)
ab=-12...(ii)

(i) a-b
from (i) 
⇒ab=-12
⇒a(4-a)=-12
⇒4a-a2=-12
⇒a2-12-4a=0
⇒a2-4a-12=0
⇒a2-6a+2a-12=0
⇒a(a-6)+2(a-6)=0
⇒(a-6)(a+2)=0
∴a-6=0 ; a+2=0
∴a=6 ; a=-2

∴a+b=4 ; a+b=4
6+b=4 ; -2+b=4
b=4-6=-2 ; b=4+2=6

∴(a,b)=(6,-2)

(i) a-b=6-(-2)=8
(ii) a2-b2=(a+b)(a-b)
=(4)(8)
=32

Question 8

Sol :
Given : p-q=9..(i)
pq=36...(ii)

From (i) and (ii)
p=q+9
∴pq=36
⇒(q+9)q=36
⇒q2+9q=36
⇒q2+9q-36=0
⇒q2+19q-3q-36=0
⇒q(q+12)-3(q+12)=0
⇒(q+12)(q-3)=0

∴q+12=0 ; q-3=0
q=-12 ; q=3

∵p-q=9 ; p-q=9
p-(-12)=9 ; p-3=9
p=9-12 ; p=9+3
p=-3 ; p=12

∴p=12 ; q=3

(i) p+q
=12+3=15

(ii) p2-q2
=(p+q)(p-q)
=15.9
=135

Question 9

Sol :
Given : x+y=6..(i) 
x-y=4..(ii)

From (i) ⇒Squaring on both sides
⇒(x+y)2=62
⇒x2+y2+2xy=36..(i)
⇒x2+y2=36-2xy..(ii)

From (ii) ⇒Squaring on both sides
⇒(x+y)2=42
⇒x2-2xy+y2=16
⇒x2+y2=16+2xy...(iv)

∴Equate equation (iii) and (iv)
⇒36-2xy=16+2xy
⇒36-16=2xy+2xy
⇒20=4xy
⇒4xy=20
⇒$xy=\frac{20}{4}$
⇒xy=5

(i) x2+y2
⇒From equation (iii) 
x2+y2=36-2xy
=36-2(5)
=36-10=26

(ii) xy=5

Question 10

Sol :
Given : $x-3=\frac{1}{x}$
⇒$x-\frac{1}{x}=3$
Squaring on both sides
⇒$\left(x-\frac{1}{x}\right)^2=3^2$
⇒$x^2-2.x\frac{1}{x}+\frac{1}{x^2}=9$
⇒$x^2-2+\frac{1}{x^2}=9$
⇒$x^2+\frac{1}{x^2}=9+2$
⇒$x^2+\frac{1}{x^2}=11$

Question 11

Sol :
Given : x+y=8 ...(1)
$xy=3\frac{3}{4}=\frac{15}{4}$....(2)
From eq(1) 
⇒y=8-x

From eq(2)
⇒$xy=\frac{15}{4}$
⇒$x(8-x)=\frac{15}{4}$
⇒$8x-x^2=\frac{15}{4}$
⇒4(8x-x2)=15
⇒32x-4x2=15
⇒4x2-32x+15=0
⇒4x2-32x+15=0
⇒4x2-30x-2x+15=0
⇒2x(2x-15)-1(2x-15)=0
⇒(2x-15)(2x-1)=0

∴2x-15=0 ; 2x-1=0
2x=15 ; 2x=1
$x=\frac{15}{2}$ ; $x=\frac{1}{2}$

∴x+y=8 ; x+y=8
$\frac{15}{2}+y=8$  ; $\frac{1}{2}+y=8$
$y=8-\frac{15}{2}$ ; $y=8-\frac{1}{2}$
$y=\frac{16-15}{2}$ ; $y=\frac{16-1}{2}$
$y=\frac{1}{2}$ ; $y=\frac{15}{2}$

∴$x=\frac{15}{2}$  ; $y=\frac{1}{2}$

(i) x-y
⇒$\frac{15}{2}-\frac{1}{2}$
⇒$\frac{15-1}{2}$
⇒$\frac{14}{2}$
⇒7

(ii) 3(x2-y2)
⇒$3\left[\left(\frac{15}{2}\right)^2+\left(\frac{1}{2}\right)^2\right]$
⇒$3\left[\frac{225}{4}+\frac{1}{4}\right]$
⇒$3\left[\frac{225+1}{4}\right]$
⇒$3\left(\frac{226}{4}\right)$
⇒$\frac{3\times 113}{2}$
⇒$\frac{339}{2}$

(iii) 5(x2+y2)+4(x-y)
⇒$5\left(\left(\frac{15}{2}\right)^2+\left(\frac{1}{2}\right)^2\right)+4(7)$
⇒$5\left[\frac{225}{4}+\frac{1}{4}\right]+4(7)$
⇒$5\left(\frac{113}{2}\right)+28$
⇒$\frac{565}{2}+28$
⇒$\frac{565+56}{2}$
⇒$\frac{621}{2}$

Question 12

Sol :
Given : x2+y2=34
$xy=10\frac{1}{2}=\frac{21}{2}$

∴(x+y)2=x2+y2+2xy
$=34+2\times \frac{21}{2}$
=34+21=55

∴(x+y)2=x2+y2-2xy
$=34-2\times \frac{21}{2}$
=34-21=13

∴2(x+y)2+(x-y)2
⇒2(55)+13
⇒110+13
⇒123

Question 13

Sol :
Given : a-b=3...(i)
ab=4...(ii)
∴a3-b3=(a-b)(a2+ab+b2)

From (i) Squaring on both sides
⇒(a-b)2=32
⇒a2+b2-2ab=9
⇒a2+b2-2(4)=9
⇒a2+b2-8=9
⇒a2+b2=9+8
⇒a2+b2=17

∴a3-b3=(a-b)(a2+ab+b2)
=3(a2+ab+b2)
=3(17+4)
=3(21)=63

Question 14

Sol :
Given : 2a-3b=3...(i)
ab=2..(ii)

From (i) Squaring on both sides
⇒(2a-3b)2=32
⇒(2a)2-2.2a.3b+(3b)2=9
⇒4a2-12ab+9b2=9
⇒4a2+9b2-12(2)=9
⇒4a2+9b2-24=9
⇒4a2+9b2=9+24
=33

∴(2a)3-(3b)3⇒8a3-27b3
⇒(2a-3b)((2a)2+2a.3b+(3b)2)
⇒3(4a2+6ab+9b2)
⇒3(33+6(2))
⇒3(33+12)
⇒3(45)
⇒139

Question 15

Sol :
Given : $x+\frac{1}{x}=4$

(i) Squaring on both sides
⇒$\left(x+\frac{1}{x}\right)^2=4^2$
⇒$x^2+2.x.\frac{1}{x}+\frac{1}{x^2}=16$
⇒$x^2+2+\frac{1}{x^2}=16$
⇒$x^2+\frac{1}{x^2}=16-2$
⇒$x^2+\frac{1}{x^2}=14$

(ii) $x^4+\frac{1}{x^4}$
∵We know that $x^2+\frac{1}{x^2}=14$
∴Squaring on both sides
⇒$\left(x^2+\frac{1}{x^2}\right)=14^2$
⇒$(x^2)^2+2.x^2..\frac{1}{x^2}+\left(\frac{1}{x^2}\right)^2=196$
⇒$x^4+2+\frac{1}{x^4}=196$
⇒$x^4+\frac{1}{x^4}=196-2$
⇒$x^4+\frac{1}{x^4}=194$

(iii) $x^3+\frac{1}{x^3}$
∵We know that $x+\frac{1}{x}=4$
Cubing on both sides
⇒$\left(x+\frac{1}{x}\right)^3=4^3$
⇒$x^3+3\times \frac{1}{x} \left(x+\frac{1}{x}\right)+\frac{1}{x^3}=64$
⇒$x^3+3\left(x+\frac{1}{x}\right)+\frac{1}{x^3}=64$
⇒$x^3+\frac{1}{x^3}=64-12$
=52

(iv) $x-\frac{1}{x}$
$\left(x-\frac{1}{x}\right)^2=x^2-2.x.\frac{1}{x}+\frac{1}{x^2}$
$=x^2+\frac{1}{x^2}-2$ ∵From (i) $x^2+\frac{1}{x^2}=14$
=14-2
$\left(x-\frac{1}{x}\right)^2=12$
$x-\frac{1}{x}=\sqrt{12}$
=√4×3
=2√3

Question 16

Sol :
Given : $x-\frac{1}{x}=5$
Squaring on both sides
⇒$\left(x-\frac{1}{x}\right)^2=5^2$
⇒$x^2-2.x.\frac{1}{x}+\frac{1}{x^2}=25$
⇒$x^2+\frac{1}{x^2}=25+2$
⇒$x^2+\frac{1}{x^2}=23$

Squaring on both sides
⇒$\left(x^2+\frac{1}{x^2}\right)^2=23^2$
⇒$(x^2)^2+2.x^2.\frac{1}{x^2}+\left(\frac{1}{x^2}\right)^2=529$
⇒$x^4+2+\frac{1}{x^4}=529$
⇒$x^4+\frac{1}{x^4}=529-2$
⇒$x^4+\frac{1}{x^4}=527$

Question 17

Sol :
Given : $x-\frac{1}{x}=\sqrt{5}$
(i) Squaring on both sides
⇒$\left(x-\frac{1}{x}\right)^2=(\sqrt{5})^2$
⇒$x^2-2.x.\frac{1}{x}+\frac{1}{x^2}=5$
⇒$x^2-2+\frac{1}{x^2}=5$
⇒$x^2+\frac{1}{x^2}=5+2$
⇒$x^2+\frac{1}{x^2}=7$


(ii) $x+\frac{1}{x}$
$\left(x+\frac{1}{x}\right)^2=x^3+2.x.\frac{1}{x}+\frac{1}{x^2}$
$=x^2+\frac{1}{x^2+2}$ [∵From (i)]
=7+2=9

⇒$\left(x+\frac{1}{x}\right)^2=9$
⇒$x+\frac{1}{x}=\sqrt{9}$
⇒$x+\frac{1}{x}=3$

(iii) $x^3+\frac{1}{x^3}$
⇒$\left(x+\frac{1}{x}\right)\left(x^2-x.\frac{1}{x}+\frac{1}{x^2}\right)$
⇒$\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)$
⇒3(7-1)
⇒3×6=18

Question 18

Sol :
Given : $x+\frac{1}{x}=6$
Squaring on both sides
⇒$\left(x+\frac{1}{x}\right)^2=6^2$
⇒$x^2+2.x.\frac{1}{x}+\frac{1}{x^2}=36$
⇒$x^2+2+\frac{1}{x^2}=36$
⇒$x^2+\frac{1}{x^2}=36-2$
⇒34

(i) $x-\frac{1}{x}$
⇒$\left(x+\frac{1}{x}\right)^2=x^2-2.x\frac{1}{x}+\frac{1}{x^2}$
⇒$x^2+\frac{1}{x^2}-2$
⇒34-2
⇒$\left(x-\frac{1}{x}\right)^2=32$
⇒$x-\frac{1}{x}=\sqrt{32}$
⇒$x-\frac{1}{x}=\sqrt{16\times 2}$
⇒$x-\frac{1}{x}=4\sqrt{2}$

(ii) $x^2-\frac{1}{x^2}$
⇒$x^2-\frac{1}{x^2}=\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}\right)$
⇒$=6.4\sqrt{2}$
⇒24√2

Question 19

Sol :
Given : $x+\frac{1}{x}=2$
Squaring on both sides
⇒$\left(x+\frac{1}{x}\right)^2=2^2$
⇒$x^2+2.x.\frac{1}{x}+\frac{1}{x^2}=4$
⇒$x^2+2+\frac{1}{x^2}=4$
⇒$x^2+\frac{1}{x^2}=4-2$
⇒$x^2+\frac{1}{x^2}=2$...(i)

∴$x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-x.\frac{1}{x}+\frac{1}{x^2}\right)$
$=2.\left(x^2+\frac{1}{x^2-1}\right)$
=2(2-1)
=2(1)
=2....(ii)

From (1) ⇒$x^2+\frac{1}{x^2}=2$
Squaring on both sides
⇒$\left(x^2+\frac{1}{x^2}\right)^2=2^2$
⇒$(x^2)^2+2.x^2.\frac{1}{x^2}+\left(\frac{1}{x^2}\right)^2=4$
⇒$x^4+2+\frac{1}{x^4}=4$
⇒$x^4+\frac{1}{x^4}=4-2$
=2..(iii)

From equation (i) , (ii) and (iii)
⇒$x^2+\frac{1}{x^2}=2$
⇒$x^3+\frac{21}{x^3}=2$
⇒$x^4+\frac{1}{x^4}=2$
∴$x^2+\frac{1}{x^2}=x^3+\frac{1}{x^3}=x^4+\frac{1}{x^4}$
Hence proved

Question 20

Sol :
Given : $x-\frac{2}{x}=3$
Cubing on both sides
⇒$\left(x-\frac{2}{x}\right)^3=3^3$
⇒$x^3-3.x.\frac{2}{x}\left(x-\frac{2}{x}\right)-\left(\frac{2}{x}\right)^3=27$
⇒$x^3-6\left(x-\frac{2}{x}\right)-\frac{8}{x^3}=27$
⇒$x^3-\frac{8}{x^3}-6(3)=27$
⇒$x^3-\frac{8}{x^3}=27+18$
=45

Question 21

Sol :
Given : a+2b=5
Cubing on both sides
⇒(a+2b)3=53
⇒a3+3.a.2b(a+2b)+(2b)3=125
⇒a3+6ab(5)+8b3=125
⇒a3+30ab+8b3=125
⇒a3+8b3+30ab=125

Question 22

Sol :
Given : $a+\frac{1}{a}=P$
Cubing on both sides
⇒$\left(a+\frac{1}{a}\right)^3=p^3$
⇒$a^3+3.x.\frac{1}{x}\left(a+\frac{1}{a}\right)+\frac{1}{a^3}=p^3$
⇒$a^3+3(p)+\frac{1}{a^3}=p^3$
⇒$a^3+\frac{1}{a^3}=p^3-3p$
⇒$a^3+\frac{1}{a^3}=p\left(p^2-3\right)$

Question 23

Sol :
Given : $x^2+\frac{1}{x^2}=27$
⇒∵$\left(x-\frac{1}{x}\right)^2=x^2-2.x.\frac{1}{x}+\frac{1}{x^2}$
⇒$=x^2-2+\frac{1}{x^2}$
⇒$=x^2+\frac{1}{x^2}-2$
⇒=27-2
⇒=25
⇒$\left(x-\frac{1}{x}\right)^2=25$
⇒$x-\frac{1}{x}=\sqrt{25}$
⇒$x-\frac{1}{x}=5$

Question 24

Sol :
Given : $x^2+\frac{1}{x^2}=27$
Take $\left(x-\frac{1}{x}\right)^2=x^2-2.x.\frac{1}{x}+\frac{1}{x^2}$
⇒$=x^2-2+\frac{1}{x^2}$
⇒$=x^2+\frac{1}{x^2}-2$
⇒=27-2
⇒$\left(x-\frac{1}{x}\right)^2=25$
⇒$x-\frac{1}{x}=\sqrt{25}$
⇒$x-\frac{1}{x}=5$

∴$3x^3+5x-\frac{3}{x^3}-\frac{5}{x}$
⇒$3x^3-\frac{3}{x^3}+5x-\frac{5}{x}$
⇒$3\left(x^3-\frac{1}{x^3}\right)+5\left(x-\frac{1}{x}\right)$
⇒$3\left(x-\frac{1}{x}\right)\left(x^2+x.\frac{1}{x}+\frac{1}{x^2}\right)+5\left(x-\frac{1}{x}\right)$
⇒$3\left(x-\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}+1\right)+5\left(x-\frac{1}{x}\right)$
⇒3(5)+(27+1)+5(5)
⇒15(28)+25
⇒420+25
⇒445

Question 25

Sol :
Given : $x^2+\frac{1}{25x^2}=8\frac{3}{5}$
$x^2+\left(\frac{1}{5x}\right)^2=\frac{4^3}{5}$

∴Let us consider
⇒$\left(x+\frac{1}{5x}\right)^2=x^2+2.x.\frac{1}{5x}+\left(\frac{1}{5x}\right)^2$
⇒$=x^2+\frac{2}{5}+\frac{1}{25x^2}$
⇒$=x^2+\frac{1}{25x^2}+\frac{2}{5}$
⇒$=\frac{43}{5}+\frac{2}{5}$
⇒$\left(x+\frac{1}{5x}\right)^2=\frac{43+2}{5}$
⇒$\left(x+\frac{1}{5x}\right)^2=\frac{47}{5}$
⇒$x+\frac{1}{5x}=\sqrt{\frac{47}{5}}$

Question 26

Sol :
Given : $x^2+\frac{1}{4x^2}=8$
$x^2+\left(\frac{1}{2x}\right)^2=8$

Let us consider
⇒$\left(x+\frac{1}{2x}\right)^2=x^2+2.x.\frac{1}{2x}+\left(\frac{1}{2x}\right)^2$
⇒$=x^2+1+\frac{1}{4x^2}$
⇒$=x^2+\frac{1}{4x^2}+1$
⇒=8+1
⇒$\left(x+\frac{1}{2x}\right)^2=9$
⇒$x+\frac{1}{2x}=\sqrt{9}$
⇒$x+\frac{1}{2x}=3$

∵$x^3+\left(\frac{1}{2x}\right)^3$
⇒$x^3+\frac{1}{3x^3}=\left(x+\frac{1}{2x}\right)\left(x^2-x.\frac{1}{2x}+\left(\frac{1}{2x}\right)^2\right)$
⇒$x^3+\frac{1}{8x^3}=\left(x+\frac{1}{2x}\right)\left(x^2+\frac{1}{4x^2}-1\right)$
=3(8-1)
=3(7)=21

Question 27

Sol :
Given : a2-3a+1=0
Dividing each term by a , we get
⇒$\frac{a^2}{a}-\frac{3a}{a}+\frac{1}{a}=0$
⇒$a-3+\frac{1}{a}=0$
⇒$a+\frac{1}{a}=3$

Now 
(i) $\left(a+\frac{1}{a}\right)^2=a^2+2.a.\frac{1}{a}+\frac{1}{a^2}$
⇒$\left(a+\frac{1}{a}\right)^2=a^2+2+\frac{1}{a^2}$
⇒$a^2+\frac{1}{a^2}=\left(a+\frac{1}{a}\right)^2-2$
=32-2
=9-2=7

(ii) $a^3+\frac{1}{a^2}$
⇒$\left(a+\frac{1}{a}\right)\left(a^2-a.\frac{1}{a}+\frac{1}{a^2}\right)$
⇒$\left(a+\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}-1\right)$
⇒(3)(7-1)
⇒3×6
⇒18

Question 28

Sol :
Given : $a=\frac{1}{a-5}$
⇒a(a-5)=1
⇒a2-5a=1
⇒a2-5a-1=0

(i) Dividing each term by a , we get
⇒$\frac{a^2}{a}-\frac{5a}{a}-\frac{1}{a}=0$
⇒$a-5-\frac{1}{a}=0$
∴$a-\frac{1}{a}=5$


(ii) Now $\left(a+\frac{1}{a}\right)$
∵$a-\frac{1}{a}=5$
Squaring on both sides
⇒$\left(a-\frac{1}{a}\right)^2=5^2$
⇒$a^2-2.a.\frac{1}{a}+\frac{1}{a^2}=25$
⇒$a^2+\frac{1}{a^2}=25-2$
⇒$a^2+\frac{1}{a^2}=23$

∴$\left(a+\frac{1}{a}\right)^2=a^2+2.a.\frac{1}{a}+\frac{1}{a^2}$
⇒$=a^2+\frac{1}{a^2}+2$
=23+2=25

∴$\left(a+\frac{1}{a}\right)^2=25$
$\left(a+\frac{1}{a}\right)=\sqrt{25}$
=5


(iii) $a^2-\frac{1}{a^2}=\left(a+\frac{1}{a}\right)\left(a-\frac{1}{a}\right)$
=5.5
=25

Question 29

Sol :
Given : $\left(x+\frac{1}{a}\right)^2=3$
⇒$x^2+2.x.\frac{1}{x}+\frac{1}{x^2}=3$
⇒$x^2+\frac{1}{x^2}=3-2$
⇒$x^2+\frac{1}{x^2}=1$

∵$x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-x.\frac{1}{x}+\frac{1}{x^2}\right)$
$=\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)$
$=\sqrt{3}(1-1)$
$=\sqrt{3}(0)=0$

Question 30

Sol :
Given : $x=5-2\sqrt{6}$
Squaring on both sides
$x^2=5$


Question 31

Sol :
Given : a+b+c=12
Squaring on both sides
⇒(a+b+c)2=122
⇒a2+b2+c2+2(ab+bc+ca)=144

∵From given ab+bc+ca=22
∴a2+b2+c2+2(22)=144
⇒a2+b2+c2+44=144
⇒a2+b2+c2=144-44
⇒a2+b2+c2=100

Question 32

Sol :
Given : a+b+c=12
Squaring on both sides
⇒(a+b+c)2=122
⇒a2+b2+c2+2(ab+bc+ca)=144

∵a2+b2+c2=100
⇒100+2(ab+bc+ca)=144
⇒2(ab+bc+ca)=144-100
⇒2(ab+bc+ca)=44
⇒$ab+bc+ca=\frac{44}{2}=22$

Question 33

Sol :
Given : a2+b2+c2=125
∴ab+bc+ca=50

∵(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
=125+2(50)
=125+100
=225

∴(a+b+c)2=225
⇒a+b+c=√225
⇒a+b+c=15

Question 34

Sol :
Given : a+b-c=5
⇒a2+b2+c2=29
⇒(a+b+c)2=a2+b2+c2+2(ab-bc-ca)
⇒52=29+2(ab-bc-ca)
⇒25=29+2(ab-bc-ca)
⇒25-29=2(ab-bc-ca)
⇒-4=2(ab-bc-ca)
⇒$ab-bc-ca=\frac{-4}{2}=-2$

Question 35

Sol :
Given : a-b=7
⇒a2+b2=85
⇒(a-b)2=a2+b2-2ab
⇒72=85-2ab
⇒49=85-2ab
⇒2ab=85-49
⇒2ab=36
⇒$ab=\frac{36}{2}$
⇒ab=18

∴a3-b3=(a-b)(a2+ab+b2)
=7(a2+b2+ab)
=7(85+18)
=7(103)
=721

Question 36

Sol :
Given , the number is x
∴ x=y-3
∴x-y=-3
⇒y-x=3

and x2+y2=29
∴y-x=3
Squaring on both sides
⇒(y-x)2=32
⇒y2+x2-2xy=9
⇒29-2xy=9
⇒2xy=20
⇒$xy=\frac{20}{2}$
⇒xy=10

Question 37

Sol :
Given : Sum of two numbers=8
Product of two numbers=15
Let, numbers be x and y
∴x+y=8
⇒xy=15
⇒x+y=8

∴x+y=8
Squaring on both sides
⇒(x+y)2=82
⇒x2+y2+2xy=64
⇒x2+y2+2(15)=64
⇒x2+y2=64-30
⇒x2+y2=34

∴x3+y3
⇒(x+y)(x2-xy+y2)
⇒8(x2+y2-xy)
⇒8(34-8)
⇒8(26)
⇒208

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2