ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2
Exercise 3.2
Question 1
Sol :
Given : x-y=8..(i)
xy=5...(ii)
Squaring both sides in equation (i)
∴(x-y)2=82
⇒x2-2.xy+y2=64
⇒x2-2(5)+y2=64
⇒x2+y2=64+10
⇒x2+y2=74
Question 2
Sol :
⇒Given : x+y=10...(i)
⇒xy=21....(ii)
Squaring both sides in equation (i)
⇒(x+y)2=102
⇒x2+2xy+y2=100
⇒x2+2(21)+y2=100
⇒x2+42+y2=100
⇒x2+y2=100-42
⇒x2+y2=58
2(x2+y2)=2×58=116
Question 3
Sol :
⇒Given : 2a+3b=7..(i)
⇒ab=2....(ii)
Squaring both sides in equal (i)
⇒(2a+3b)2=72
⇒(2a)2+2.2a+3b+(3b)2=49
⇒4a2+12ab+9b2=49
⇒4a2+12(2)+9b2=49
⇒4a2+24+9b2=49
⇒4a2+9b2=49-24
⇒4a2+9b2=25
Question 4
Sol :
⇒Given : 3x-4y=16...(i)
⇒xy=4..(ii)
Squaring on both sides in equation (i)
⇒(3x-4y)2=162
⇒(3x)2-2.3x.4y+(4y)2=256
⇒9x2-24xy+16y2=256
⇒9x2-24(4)+16y2=256
⇒9x2-96+16y2=256
⇒9x2+16y2=256+96
⇒9x2+16y2=352
Question 5
Sol :
⇒Given : x+y=8...(i)
⇒x-y=2...(ii)
Since we know that
⇒2(x)2+2(y)2=(x+y)2+(x-y)2
From (i) ⇒Squaring on both sides
(x+y)2=82
=64
From (ii) ⇒Squaring on both sides
(x-y)2=22
=4
∴2(x2+y2)=(x+y)2+(x-y)2
=64+4
=68
Question 6
Sol :
Given : a2+b2=13...(i)
ab=6...(ii)
(i) a+b
∴(a+b)2=a2+2ab+b2
=a2+b2+2ab
=13+2(6)
=13+12
(a+b)2=25
a+b=√25
a+b=5
(ii) a-b
∴(a-b)2=a2-2ab+b2
=a2+b2-2ab
=13-2(6)
=13-12
(a-b)2=1
(a-b)=√1
∴a-b=1
Question 7
Sol :
Given : a+b=4...(i)
ab=-12...(ii)
(i) a-b
from (i)
⇒ab=-12
⇒a(4-a)=-12
⇒4a-a2=-12
⇒a2-12-4a=0
⇒a2-4a-12=0
⇒a2-6a+2a-12=0
⇒a(a-6)+2(a-6)=0
⇒(a-6)(a+2)=0
∴a-6=0 ; a+2=0
∴a=6 ; a=-2
∴a+b=4 ; a+b=4
6+b=4 ; -2+b=4
b=4-6=-2 ; b=4+2=6
∴(a,b)=(6,-2)
(i) a-b=6-(-2)=8
(ii) a2-b2=(a+b)(a-b)
=(4)(8)
=32
Question 8
Sol :
Given : p-q=9..(i)
pq=36...(ii)
From (i) and (ii)
p=q+9
∴pq=36
⇒(q+9)q=36
⇒q2+9q=36
⇒q2+9q-36=0
⇒q2+19q-3q-36=0
⇒q(q+12)-3(q+12)=0
⇒(q+12)(q-3)=0
∴q+12=0 ; q-3=0
q=-12 ; q=3
∵p-q=9 ; p-q=9
p-(-12)=9 ; p-3=9
p=9-12 ; p=9+3
p=-3 ; p=12
∴p=12 ; q=3
(i) p+q
=12+3=15
(ii) p2-q2
=(p+q)(p-q)
=15.9
=135
Question 9
Sol :
Given : x+y=6..(i)
x-y=4..(ii)
From (i) ⇒Squaring on both sides
⇒(x+y)2=62
⇒x2+y2+2xy=36..(i)
⇒x2+y2=36-2xy..(ii)
From (ii) ⇒Squaring on both sides
⇒(x+y)2=42
⇒x2-2xy+y2=16
⇒x2+y2=16+2xy...(iv)
∴Equate equation (iii) and (iv)
⇒36-2xy=16+2xy
⇒36-16=2xy+2xy
⇒20=4xy
⇒4xy=20
⇒xy=204
⇒xy=5
(i) x2+y2
⇒From equation (iii)
x2+y2=36-2xy
=36-2(5)
=36-10=26
(ii) xy=5
Question 10
Sol :
Given : x−3=1x
⇒x−1x=3
Squaring on both sides
⇒(x−1x)2=32
⇒x2−2.x1x+1x2=9
⇒x2−2+1x2=9
⇒x2+1x2=9+2
⇒x2+1x2=11
Question 11
Sol :
Given : x+y=8 ...(1)
xy=334=154....(2)
From eq(1)
⇒y=8-x
From eq(2)
⇒xy=154
⇒x(8−x)=154
⇒8x−x2=154
⇒4(8x-x2)=15
⇒32x-4x2=15
⇒4x2-32x+15=0
⇒4x2-32x+15=0
⇒4x2-30x-2x+15=0
⇒2x(2x-15)-1(2x-15)=0
⇒(2x-15)(2x-1)=0
∴2x-15=0 ; 2x-1=0
2x=15 ; 2x=1
x=152 ; x=12
∴x+y=8 ; x+y=8
152+y=8 ; 12+y=8
y=8−152 ; y=8−12
y=16−152 ; y=16−12
y=12 ; y=152
∴x=152 ; y=12
(i) x-y
⇒152−12
⇒15−12
⇒142
⇒7
(ii) 3(x2-y2)
⇒3[(152)2+(12)2]
⇒3[2254+14]
⇒3[225+14]
⇒3(2264)
⇒3×1132
⇒3392
(iii) 5(x2+y2)+4(x-y)
⇒5((152)2+(12)2)+4(7)
⇒5[2254+14]+4(7)
⇒5(1132)+28
⇒5652+28
⇒565+562
⇒6212
Question 12
Sol :
Given : x2+y2=34
xy=1012=212
∴(x+y)2=x2+y2+2xy
=34+2×212
=34+21=55
∴(x+y)2=x2+y2-2xy
=34−2×212
=34-21=13
∴2(x+y)2+(x-y)2
⇒2(55)+13
⇒110+13
⇒123
Question 13
Sol :
Given : a-b=3...(i)
ab=4...(ii)
∴a3-b3=(a-b)(a2+ab+b2)
From (i) Squaring on both sides
⇒(a-b)2=32
⇒a2+b2-2ab=9
⇒a2+b2-2(4)=9
⇒a2+b2-8=9
⇒a2+b2=9+8
⇒a2+b2=17
∴a3-b3=(a-b)(a2+ab+b2)
=3(a2+ab+b2)
=3(17+4)
=3(21)=63
Question 14
Sol :
Given : 2a-3b=3...(i)
ab=2..(ii)
From (i) Squaring on both sides
⇒(2a-3b)2=32
⇒(2a)2-2.2a.3b+(3b)2=9
⇒4a2-12ab+9b2=9
⇒4a2+9b2-12(2)=9
⇒4a2+9b2-24=9
⇒4a2+9b2=9+24
=33
∴(2a)3-(3b)3⇒8a3-27b3
⇒(2a-3b)((2a)2+2a.3b+(3b)2)
⇒3(4a2+6ab+9b2)
⇒3(33+6(2))
⇒3(33+12)
⇒3(45)
⇒139
Question 15
Sol :
Given : x+1x=4
(i) Squaring on both sides
⇒(x+1x)2=42
⇒x2+2.x.1x+1x2=16
⇒x2+2+1x2=16
⇒x2+1x2=16−2
⇒x2+1x2=14
(ii) x4+1x4
∵We know that x2+1x2=14
∴Squaring on both sides
⇒(x2+1x2)=142
⇒(x2)2+2.x2..1x2+(1x2)2=196
⇒x4+2+1x4=196
⇒x4+1x4=196−2
⇒x4+1x4=194
(iii) x3+1x3
∵We know that x+1x=4
Cubing on both sides
⇒(x+1x)3=43
⇒x3+3×1x(x+1x)+1x3=64
⇒x3+3(x+1x)+1x3=64
⇒x3+1x3=64−12
=52
(iv) x−1x
(x−1x)2=x2−2.x.1x+1x2
=x2+1x2−2 ∵From (i) x2+1x2=14
=14-2
(x−1x)2=12
x−1x=√12
=√4×3
=2√3
Question 16
Sol :
Given : x−1x=5
Squaring on both sides
⇒(x−1x)2=52
⇒x2−2.x.1x+1x2=25
⇒x2+1x2=25+2
⇒x2+1x2=23
Squaring on both sides
⇒(x2+1x2)2=232
⇒(x2)2+2.x2.1x2+(1x2)2=529
⇒x4+2+1x4=529
⇒x4+1x4=529−2
⇒x4+1x4=527
Question 17
Sol :
Given : x−1x=√5
(i) Squaring on both sides
⇒(x−1x)2=(√5)2
⇒x2−2.x.1x+1x2=5
⇒x2−2+1x2=5
⇒x2+1x2=5+2
⇒x2+1x2=7
(ii) x+1x
(x+1x)2=x3+2.x.1x+1x2
=x2+1x2+2 [∵From (i)]
=7+2=9
⇒(x+1x)2=9
⇒x+1x=√9
⇒x+1x=3
(iii) x3+1x3
⇒(x+1x)(x2−x.1x+1x2)
⇒(x+1x)(x2+1x2−1)
⇒3(7-1)
⇒3×6=18
Question 18
Sol :
Given : x+1x=6
Squaring on both sides
⇒(x+1x)2=62
⇒x2+2.x.1x+1x2=36
⇒x2+2+1x2=36
⇒x2+1x2=36−2
⇒34
(i) x−1x
⇒(x+1x)2=x2−2.x1x+1x2
⇒x2+1x2−2
⇒34-2
⇒(x−1x)2=32
⇒x−1x=√32
⇒x−1x=√16×2
⇒x−1x=4√2
(ii) x2−1x2
⇒x2−1x2=(x+1x)(x−1x)
⇒=6.4√2
⇒24√2
Question 19
Sol :
Given : x+1x=2
Squaring on both sides
⇒(x+1x)2=22
⇒x2+2.x.1x+1x2=4
⇒x2+2+1x2=4
⇒x2+1x2=4−2
⇒x2+1x2=2...(i)
∴x3+1x3=(x+1x)(x2−x.1x+1x2)
=2.(x2+1x2−1)
=2(2-1)
=2(1)
=2....(ii)
From (1) ⇒x2+1x2=2
Squaring on both sides
⇒(x2+1x2)2=22
⇒(x2)2+2.x2.1x2+(1x2)2=4
⇒x4+2+1x4=4
⇒x4+1x4=4−2
=2..(iii)
From equation (i) , (ii) and (iii)
⇒x2+1x2=2
⇒x3+21x3=2
⇒x4+1x4=2
∴x2+1x2=x3+1x3=x4+1x4
Hence proved
Question 20
Sol :
Given : x−2x=3
Cubing on both sides
⇒(x−2x)3=33
⇒x3−3.x.2x(x−2x)−(2x)3=27
⇒x3−6(x−2x)−8x3=27
⇒x3−8x3−6(3)=27
⇒x3−8x3=27+18
=45
Question 21
Sol :
Given : a+2b=5
Cubing on both sides
⇒(a+2b)3=53
⇒a3+3.a.2b(a+2b)+(2b)3=125
⇒a3+6ab(5)+8b3=125
⇒a3+30ab+8b3=125
⇒a3+8b3+30ab=125
Question 22
Sol :
Given : a+1a=P
Cubing on both sides
⇒(a+1a)3=p3
⇒a3+3.x.1x(a+1a)+1a3=p3
⇒a3+3(p)+1a3=p3
⇒a3+1a3=p3−3p
⇒a3+1a3=p(p2−3)
Question 23
Sol :
Given : x2+1x2=27
⇒∵(x−1x)2=x2−2.x.1x+1x2
⇒=x2−2+1x2
⇒=x2+1x2−2
⇒=27-2
⇒=25
⇒(x−1x)2=25
⇒x−1x=√25
⇒x−1x=5
Question 24
Sol :
Given : x2+1x2=27
Take (x−1x)2=x2−2.x.1x+1x2
⇒=x2−2+1x2
⇒=x2+1x2−2
⇒=27-2
⇒(x−1x)2=25
⇒x−1x=√25
⇒x−1x=5
∴3x3+5x−3x3−5x
⇒3x3−3x3+5x−5x
⇒3(x3−1x3)+5(x−1x)
⇒3(x−1x)(x2+x.1x+1x2)+5(x−1x)
⇒3(x−1x)(x2+1x2+1)+5(x−1x)
⇒3(5)+(27+1)+5(5)
⇒15(28)+25
⇒420+25
⇒445
Question 25
Sol :
Given : x2+125x2=835
x2+(15x)2=435
∴Let us consider
⇒(x+15x)2=x2+2.x.15x+(15x)2
⇒=x2+25+125x2
⇒=x2+125x2+25
⇒=435+25
⇒(x+15x)2=43+25
⇒(x+15x)2=475
⇒x+15x=√475
Question 26
Sol :
Given : x2+14x2=8
x2+(12x)2=8
Let us consider
⇒(x+12x)2=x2+2.x.12x+(12x)2
⇒=x2+1+14x2
⇒=x2+14x2+1
⇒=8+1
⇒(x+12x)2=9
⇒x+12x=√9
⇒x+12x=3
∵x3+(12x)3
⇒x3+13x3=(x+12x)(x2−x.12x+(12x)2)
⇒x3+18x3=(x+12x)(x2+14x2−1)
=3(8-1)
=3(7)=21
Question 27
Sol :
Given : a2-3a+1=0
Dividing each term by a , we get
⇒a2a−3aa+1a=0
⇒a−3+1a=0
⇒a+1a=3
Now
(i) (a+1a)2=a2+2.a.1a+1a2
⇒(a+1a)2=a2+2+1a2
⇒a2+1a2=(a+1a)2−2
=32-2
=9-2=7
(ii) a3+1a2
⇒(a+1a)(a2−a.1a+1a2)
⇒(a+1a)(a2+1a2−1)
⇒(3)(7-1)
⇒3×6
⇒18
Question 28
Sol :
Given : a=1a−5
⇒a(a-5)=1
⇒a2-5a=1
⇒a2-5a-1=0
(i) Dividing each term by a , we get
⇒a2a−5aa−1a=0
⇒a−5−1a=0
∴a−1a=5
(ii) Now (a+1a)
∵a−1a=5
Squaring on both sides
⇒(a−1a)2=52
⇒a2−2.a.1a+1a2=25
⇒a2+1a2=25−2
⇒a2+1a2=23
∴(a+1a)2=a2+2.a.1a+1a2
⇒=a2+1a2+2
=23+2=25
∴(a+1a)2=25
(a+1a)=√25
=5
(iii) a2−1a2=(a+1a)(a−1a)
=5.5
=25
Question 29
Sol :
Given : (x+1a)2=3
⇒x2+2.x.1x+1x2=3
⇒x2+1x2=3−2
⇒x2+1x2=1
∵x3+1x3=(x+1x)(x2−x.1x+1x2)
=(x+1x)(x2+1x2−1)
=√3(1−1)
=√3(0)=0
Question 30
Sol :
Given : x=5−2√6
Squaring on both sides
x2=5
Question 31
Sol :
Given : a+b+c=12
Squaring on both sides
⇒(a+b+c)2=122
⇒a2+b2+c2+2(ab+bc+ca)=144
∵From given ab+bc+ca=22
∴a2+b2+c2+2(22)=144
⇒a2+b2+c2+44=144
⇒a2+b2+c2=144-44
⇒a2+b2+c2=100
Question 32
Sol :
Given : a+b+c=12
Squaring on both sides
⇒(a+b+c)2=122
⇒a2+b2+c2+2(ab+bc+ca)=144
∵a2+b2+c2=100
⇒100+2(ab+bc+ca)=144
⇒2(ab+bc+ca)=144-100
⇒2(ab+bc+ca)=44
⇒ab+bc+ca=442=22
Question 33
Sol :
Given : a2+b2+c2=125
∴ab+bc+ca=50
∵(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
=125+2(50)
=125+100
=225
∴(a+b+c)2=225
⇒a+b+c=√225
⇒a+b+c=15
Question 34
Sol :
Given : a+b-c=5
⇒a2+b2+c2=29
⇒(a+b+c)2=a2+b2+c2+2(ab-bc-ca)
⇒52=29+2(ab-bc-ca)
⇒25=29+2(ab-bc-ca)
⇒25-29=2(ab-bc-ca)
⇒-4=2(ab-bc-ca)
⇒ab−bc−ca=−42=−2
Question 35
Sol :
Given : a-b=7
⇒a2+b2=85
⇒(a-b)2=a2+b2-2ab
⇒72=85-2ab
⇒49=85-2ab
⇒2ab=85-49
⇒2ab=36
⇒ab=362
⇒ab=18
∴a3-b3=(a-b)(a2+ab+b2)
=7(a2+b2+ab)
=7(85+18)
=7(103)
=721
Question 36
Sol :
Given , the number is x
∴ x=y-3
∴x-y=-3
⇒y-x=3
and x2+y2=29
∴y-x=3
Squaring on both sides
⇒(y-x)2=32
⇒y2+x2-2xy=9
⇒29-2xy=9
⇒2xy=20
⇒xy=202
⇒xy=10
Question 37
Sol :
Given : Sum of two numbers=8
Product of two numbers=15
Let, numbers be x and y
∴x+y=8
⇒xy=15
⇒x+y=8
∴x+y=8
Squaring on both sides
⇒(x+y)2=82
⇒x2+y2+2xy=64
⇒x2+y2+2(15)=64
⇒x2+y2=64-30
⇒x2+y2=34
∴x3+y3
⇒(x+y)(x2-xy+y2)
⇒8(x2+y2-xy)
⇒8(34-8)
⇒8(26)
⇒208
Comments
Post a Comment