ML Aggarwal Solution Class 10 Chapter 13 Similarity Exercise 13.3

 Exercise 13.3

Question 1

Given that ∆s ABC and PQR are similar.

Find:

(i) The ratio of the area of ∆ABC to the area of ∆PQR if their corresponding sides are in the ratio 1 : 3.

(ii) the ratio of their corresponding sides if area of ∆ABC : area of ∆PQR = 25 : 36.

Sol :

(i) ∴ ∆ABC ~ ∆PQR

 area of ΔABC area of ΔPQR=BC2QR2

(By theorem 15.1)

But BC = QR =1 : 3

 area of ΔABC area of ΔPQR=BC2QR2

 area of ΔABC area of ΔPQR=(1)2(3)2=19

Hence area of ΔABC: area of ΔPQR

=1: 9


(ii) ΔABCΔPQR

 area of ΔABC area of ΔPQR=BC2QR2

(By theorem 15.1)

But area of ΔABC=area of ΔPQR

=25 : 36

BC2QR2=2536(BCQR)2=(56)2

BCQR=56

BC:QR=5:6


Question 2

∆ABC ~ DEF. If area of ∆ABC = 9 sq. cm., area of ∆DEF =16 sq. cm and BC = 2.1 cm., find the length of EF.

Sol :

Let EF = x

Given that

∆ABC ~ ∆DEF,

 area ΔABC area ΔDEF=BC2EF2

916=BC2EF2

(21)2x2=916

21x=34

(Taking square root)

3x=4×21

x=4×213

∴x=2.8

Hence EF=2.8 cm


Question 3

∆ABC ~ ∆DEF. If BC = 3 cm, EF = 4 cm and area of ∆ABC = 54 sq. cm. Determine the area of ∆DEF.

Sol :

∆ABC ~ ∆DEF

 area of ΔABC area of ΔDEF=BC2EF2

54 area of ΔDEF=(3)2(4)2

54 area of ΔDEF=916

area of ΔDEF=54×169=6×16

=96 cm


Question 4

The area of two similar triangles are 36 cm² and 25 cm². If an altitude of the first triangle is 2.4 cm, find the corresponding altitude of the other triangle.

Sol :

Let ABC ~ ∆DEF, AL and DM are their altitudes

then area of ∆ABC = 36 cm²

area of ∆DEF = 25 cm² and AL = 2.4 cm.

Let DM = x

Now ∆ABC ~ ∆DEF

 area of ΔABC area of ΔDEF=AL2DM2

3625=(24)2x2

36x2=(24)2×25

x2=(24)2×2536=576×25100×36=164

=4=(2)2

x=2 cm

Hence altitude of the other triangle

=2 cm


Question 5

(a) In the figure, (i) given below, PB and QA are perpendiculars to the line segment AB. If PO = 6 cm, QO = 9 cm and the area of ∆POB = 120 cm², find the area of ∆QOA. (2006)





(b) In the figure (ii) given below, AB || DC. AO = 10 cm, OC = 5cm, AB = 6.5 cm and OD = 2.8 cm.
(i) Prove that ∆OAB ~ ∆OCD.
(ii) Find CD and OB.
(iii) Find the ratio of areas of ∆OAB and ∆OCD.












Sol :
In ∆AOQ and ∆BOP, we have
∠ OAQ = ∠ OBP [Each = 90°]
∠ AOQ= ∠BOP
[Vertically opposite angles]
∆AOQ ~ ∆BOP [A.A. similarity]

 Area of ΔAOQ Area of ΔBOP=OQ2PO2

[ Area's of similar triangles are proportional to the squares of their corresponding sides]

 Area of ΔAOQ120=(9)2(6)2

 Area of ΔAOQ120=8136

Area of ΔAOQ=81×12036=9×30 cm2

=270 cm2


(b) Given : In the figure AB || CD

AO=10 cm, OC=5 cm

 AB=6.5 cm and OD=2.8 cm







To prove : (i) ΔOAB∼ΔOCD

(ii) Find CD and OB

(iii) Find the ratio of areas of ΔOAB and ΔOCD

Proof : In the ΔOAB and ΔOCD

(i) ∴∠AOB=∠COD

(vertically opposite angles)

OAB=OCD (Alternate angles)

OBA=ODC (Alternate angles)

∴ΔOAB〜ΔOCD (AAA axiom)


(ii) ∴OAOC=OBOD=ABCD

105=OB2.8=6.5CD


(a) OB2.8=105

OB=105×2.8=5.6 cm

OB=5.6 cm


(b) 6.5CD=105

CD=6.5×510

CD=32.510=3.25 cm


(iii) ΔOABΔOCD (Proved)

ar(ΔOAB)ar(ΔOCD)

=AB2CD2=(6.5)2(3.25)2

=6.5×6.53.25×3.25

=2×21=41

ar(ΔOAB):ar(ΔOCD)=4:1


Question 6

(a) In the figure (i) given below, DE || BC. If DE = 6 cm, BC = 9 cm and area of ∆ADE = 28 sq. cm, find the area of ∆ABC.











(b) In the figure (iii) given below, DE || BC and AD : DB = 1 : 2, find the ratio of the areas of ∆ADE and trapezium DBCE.










Sol :
(a) In the figure,
DE || BC
∠D = ∠B and ∠E = ∠C
(Corresponding angles)

Now in ΔADE and ΔABC

D=B,E=C (proved)

A=A

ΔADEΔABC (AAA postulate)

 area of ΔADE area of ΔABC

=(DE)2(BC)2

28 area of ΔABC

=(6)2(9)2=3681

area of ΔABC=28×8136=63

Area of ΔABC=63 cm2


(b) In the figure , DE || BC

D=B and E=C

(corresponding angles)

Now in ΔADE and ΔABC

∠D=∠B, ∠E=∠C (proved)

∴∠A=∠A (common)

∴ΔADE〜ΔABC (AAA postulate)

But ADDB=12

DBAD=21

Adding 1 both sides

DBAD+1=21+1

AD+DBAD=2+11

ABAD=31

ADAB=13

ΔADEΔABC

 area of ΔADE area of ΔABC=AD2AB2=(13)2=19

area of ΔABC=9 area of ΔADE

area of trapezium DBCE

area of ΔABC area of ΔADE

=9 area of ΔADE area of ΔADE

=8 area of ΔADE

 area of ΔADE area of trapezium DBCE =18

area of ΔADE : area of trepezium DBCE

=1 : 8


Question 7

In the given figure, DE || BC.

(i) Prove that ∆ADE and ∆ABC are similar.

(ii) Given that AD=12BD, calculate DE if BC=4.5 cm









(iii) If area of ∆ABC = 18cm², find the area of trapezium DBCE

Sol :

(i) Given : In ∆ABC, DE || BC.

To prove : ∆ADE ~ ∆ABC

Proof: In ∆ADE and ∆ABC,

∠A = ∠A (common)

∠ADE = ∠ABC (corresponding angles)

∴ ∆ADE ~ ∆ABC. (AA axiom)


(ii) ∴ ∆ADE ~ ∆ABC

ADAB=ABAC=DEBC

ADAD+BD=DEBC

12BD12BD+BD=DE4.5

(∵BC=4.5)

12BD32BD=DE45

12×23=DE45

13=DE45

DE=453=15 cm 


(iii) Area of ΔABC=18 cm2

 area of ΔADE area of ΔABC=DE2BC2

(Area of similar triangles are proportional to the square of their corresponding sides)

 area of ΔADE18=(DEBC)2

 area of ΔADE18=(ADAB)2

 area of ΔADE18=(13)2=19

[proved in (ii)]

area of ΔADE=18×19=2

area of tripezium DBCE

=area of ΔABC-area of ΔADE

=18-2=16cm2


Question 8

In the given figure, AB and DE are perpendicular to BC.

(i) Prove that ∆ABC ~ ∆DEC

(ii) If AB = 6 cm: DE = 4 cm and AC = 15 cm, calculate CD.

(iii) Find the ratio of the area of ∆ABC : area of ∆DEC






Sol :

(i) To prove : ∆ABC ~ ∆DEC

In ∆ABC and ∆DEC

ABC=DEC=90 

C=C (common)

ΔABCΔDEC (by AA axiom)


(ii) ACCD=ABDE

(Corresponding sides of similar triangles are proportional)

15CD=64

CD=15×46


(iii)  area of ΔABC area of ΔDEC=AB2DE2

=6242=3616=94=9:4


Question 9

In the adjoining figure, ABC is a triangle.

DE is parallel to BC and ADDB=32

(i) Determine the ratios ADAB,DEBC

(ii) Prove that ∆DEF is similar to ∆CBF.

Hence, find EFFB

(iii) What is the ratio of the areas of ∆DEF and ∆CBF ? (2007)











Sol :

(i) ADDB=32 (given)

DBAD=23

or DBAD+1=23+1

or DB+ADAD=2+33

or ABAD=53

ADAB=35

In ΔADE and ΔABC

∠ADE=∠B (Corresponding ∠s)

∠AED=∠C (Corresponding ∠s)

∴By AA similarity

ΔADE〜ΔABC

ADAB=DEBC

DEBC=35


(ii) In ΔDEF and ΔCBF






∠1=∠2 (Alternate ∠s)

∠3=∠4 (Alternate ∠s)

∠5=∠6 (Vertically oppo. ∠s)

∴ΔDEF〜ΔCBF

EFFB=DEBC=35


(iii) As the ratio of the area of two similar triangles is equal to the ratio of the square of any two corresponding sides.

 Area of ΔDFE Area of ΔBFC=DE2BC2

=(DEBC)2=(35)2=925


Question 10

In ∆ABC, AP : PB = 2 : 3. PO is parallel to BC and is extended to Q so that CQ is parallel to BA. Find:

(i) area ∆APO : area ∆ABC.

(ii) area ∆APO : area ∆CQO. (2008)







Sol :

In the figure,

PQ || BC and PO is produced to Q such that CQ || BA

and AP : PB = 2 : 3.

Figure to be added

(i) Now in ΔAPO and ΔABC
∠A=∠A (Common)
∠APO=∠ABC (Corresponding angles)
∴ΔAPO~ΔABC (AA axiom)

∵Areas of the similar triangle are proportional to the square of their corresponding sides

area(ΔAPO)area(ΔABC)=AP2AB2=AP2(AP+PB)2

=(2)2(2+3)2=4(5)2=425

area (APO): area (ΔABC)=4:25


(ii) In ΔAPO and ΔCQO

AOP=COQ

(vertically opposite angles)

APQ=OQC (Alternate angles)

∴ΔAPQ~ΔCQO

area(ΔAPO)area(ΔCQO)=AP2CQ2=AP2PB2

(PB=CQ)

=(2)2(3)2=49

area (ΔAPO) : area (ΔCQO)

=4 : 9


Question 11

(a) In the figure (i) given below, ABCD is a trapezium in which AB || DC and AB = 2 CD. Determine the ratio of the areas of ∆AOB and ∆COD.

(b) In the figure (ii) given below, ABCD is a parallelogram. AM ⊥ DC and AN ⊥ CB. If AM = 6 cm, AN = 10 cm and the area of parallelogram ABCD is 45 cm², find

(i) AB

(ii) BC

(iii) area of ∆ADM : area of ∆ANB.

(c) In the figure (iii) given below, ABCD is a parallelogram. E is a point on AB, CE intersects the diagonal BD at O and EF || BC. If AE : EB = 2 : 3, find

(i) EF : AD

(ii) area of ∆BEF : area of ∆ABD

(iii) area of ∆ABD : area of trap. AFED

(iv) area of ∆FEO : area of ∆OBC.













Sol :
(a) In trapezium ABCD, AB || DC.
∠OAB = ∠OCD [alternate angles]
∠OBA = ∠ODC
∆AOB ~ ∆COD

 area of ΔAOB area of ΔCOD=AB2CD2

=(2CD)2CD2 (AB=2CD)

=4CD2CD2=41

∴area of ΔAOB : area of ΔCOD= 4 : 1


(b) In ||gm ABCD, AM⊥DC and AN⊥CB 

Now area of ||gm ABCD= DC×AM or

BC×AN

∴DC×AM=BC×AN=area of ||gm

⇒DC×6=BC×10=45


(i) ∴DC=456=152=75 cm

∴AB=7.5 cm (∵AB=DC)

(ii) Now in ΔADM and ΔABN

∠D=∠B (opposite angles of a ||gm)

∠M=∠N (each 90°)

ΔADMΔABN

 area of ΔADM area of ΔABN=AD2AB2

=BC2AB2=(45)2(75)2

=20255625=20255625

=81225=925

area of Δ ADM : area of Δ ABN

= 9 : 25


(c) In ||gm ABCD, E is a point on AB , CE intersects the diagonal BD at O

EF || BC and AE : EB=2 : 3

In ΔABD,EFBC or AD

(i) ABBE=ADEF

EFAD=BEAB

But AEEB=23

AEEB+1=23+1

AE+EBEB=2+33

ABEB=53

BEAB=35

⇒EF : AD= 3 : 5


(ii) ∵ΔBEF~ΔABD

 area of ΔBEF area of ΔABD=(EF)2(AD)2

=(3)2(5)2=925

area of ΔBEF: area of ΔABD=9:25


(iii)  area of ΔABD area of ΔBEF=259 (from (ii))

25 area of ΔBEF=9 area of ΔABD

25 (area of ΔABD - area of trap AEFD)

=9 area of ΔABD

25 area of ΔABD25 area of AFED

=9 area of ΔABD

25 area of trap AEFD =25 area of ΔABD9 area of ΔABD

25 area of AEFD=16 area of ΔABD

 area of ΔABD area of trap AEFD=2516

area of ΔABD: area of trap AEFD

= 25 : 16


(iv) In Δ FEO and Δ OBC

EOF=BOC

(Vertically opposite angles)

F=OBC (Alternate angles)

ΔFEOΔOBC

 area of FEO  area of ΔOBC=EF2BC2

=EF2AD2=925 [From (i)]

area of ΔFEO: area of ΔOBC=9:25


Question 12

In the adjoining figure, ABCD is a parallelogram. P is a point on BC such that BP : PC = 1 : 2 and DP produced meets AB produced at Q. If area of ∆CPQ = 20 cm², find









(i) area of ∆BPQ.

(ii) area ∆CDP.

(iii) area of || gm ABCD.

Sol :

In the figure, ABCD is a parallelogram.

P is a point on BC such that BP : PC = 1 : 2

and DP is produced to meet ABC produced at Q.

Area ∆CPQ = 20 cm²










Draw QN CB (Produced)

areaΔBPQ area ΔCPQ=12BP×QN12PC×QN

=BPPC=12 (given)

(i) ∴Area ΔBPQ=12 area ΔCPQ=12×20 cm2=10 cm2


(ii) Now in Δ CDP and Δ BQP,

CPD=QPB (Vertically opposite angles)

PDC=POB (Alternate angles)

ΔCDPΔBQP (AA axiom)

 area ΔCDP area ΔBQP=PC2BP2

areaCDPareaBQP=(2)2(1)2

=41

area ΔCDP=4× area ΔBQP
=4×10=40 cm2

(iii) Now area of ||gm ABCD=2 Area ΔDCQ
{ΔDCQ and ||gm ABCD are one the same base and between the same parallels}
=2 area (ΔDCP+ΔCPQ)
=2(40+20)cm2
=2×60 cm2=120 cm2


Question 13

(a) In the figure (i) given below, DE || BC and the ratio of the areas of ∆ADE and trapezium DBCE is 4 : 5. Find the ratio of DE : BC.










(b) In the figure (ii) given below, AB || DC and AB = 2 DC. If AD = 3 cm, BC = 4 cm and AD, BC produced meet at E, find (i) ED (ii) BE (iii) area of ∆EDC : area of trapezium ABCD.











Sol :
(a) In ∆ABC, DE || BC
Now in ∆ABC and ∆ADE
∠A = ∠A (common)
∠D = ∠B and ∠E = ∠C
(Corresponding angles)
∆ADE ~ ∆ABC

 area of ΔADE area of ΔABC=(DE)2(BC)2...(i)

But  area of ΔADE area of trap DBCE=45

 area of trap DBCE area of ΔADE=54

 area of trap DBCE area of ΔADE+1

=54+1

(Adding 1 both sides)

 area of trap DBCE+ area of ΔADE area of ΔADE

=5+44=94

 area of ΔABC area of ΔADE=94

 area of ΔADE area of ΔABC=49

Now from (i) (DE)2(BC)2=49

(2)2(3)2
DEBC=23
DE:BC=2:3


(b) In the figure , DC||AB, AB=2 DC

AD=3 cm, BC=4 cm

In ΔEAB, DC||AB

EADA=EBCB

=ABDC=2DCDC=21

(i) ∴EA=2, DA=2×3=6
ED=EA-DA=6-3=3cm

(ii) EBCB=21

EB=2CB=2×4=8 cm

BE=8 cm

(iii) InΔEAB,DCAB

ΔEDCΔEAB

 area of ΔEDC area of ΔABE=DC2AB2

=DC2(2DC)2

=DC24DC2=14

=14


area of ABE=4 area of ΔEDC

area of ΔEDC+ area of trap ABCD=4 area of Δ EDC

area of trapABCD=4 area of ΔEDC area of Δ EDC

area of trapABCD=3 area of ΔEDC

 area of ΔEDC area of trap ABCD=13

area of ΔEDC: area of trap. ABCD=1:3


Question 14

(a) In the figure given below, ABCD is a trapezium in which DC is parallel to AB. If AB = 9 cm, DC = 6 cm and BB = 12 cm., find
(i) BP
(ii) the ratio of areas of ∆APB and ∆DPC.








(b) In the figure given below, ∠ABC = ∠DAC and AB = 8 cm, AC = 4 cm, AD = 5 cm.
(i) Prove that ∆ACD is similar to ∆BCA
(ii) Find BC and CD
(iii) Find the area of ∆ACD : area of ∆ABC.











Sol :

(a) In trapezium ABCD, DC || AB









AB=9 cm, DC=6 cm, BD=12 cm

(i) In ΔAPB and ΔCPD
APB=CPD 
(Vertically opposite angles)

PAB=PCD (alternate angles)

ΔAPBΔCPD (alternate angles)

ΔAPBΔCPD (AA postulate)

BPPD=ABCD

BP12BP=96

6BP=1089BP

6BP+9BP=108

15BP=108

BP=10815=72 cm


(ii) Again 
∵ΔAPB~ΔCPD

 area of ΔAPB area of ΔCPD=AB2CD2

=(9)2(6)2=8136=94


(b) In ΔACD and ΔBCA










∠C=∠C (common)
∠ABC=∠CAD (Given)
∴ΔACD≅ΔBCA (by AA axiom)

ACBC=CDCA=ADAB

4BC=CD4=58

4BC=58

BC=4×85=325=6.4 cm

CD4=58

CD=58×4=52=2.5 cm


(iii) ΔACDΔBCA

area(ΔACB)area(ΔBCA)=AC2AB2

=(4)2(8)2=1664=14

area (ΔACD): area (ΔABC)=1:4


Question 15

ABC is a right angled triangle with ∠ABC = 90°. D is any point on AB and DE is perpendicular to AC. Prove that:
(i) ∆ADE ~ ∆ACB.
(ii) If AC = 13 cm, BC = 5 cm and AE = 4 cm. Find DE and AD.
(iii) Find, area of ∆ADE : area of quadrilateral BCED.










Sol :
(i) Consider DADE and DACB
∠A = ∠A (Common)
m∠B = m∠E = 90°
Thus by angle-angle similarity, triangles,
∆ACB ~ ∆ADE


(ii) Consider ∆ADE and ∆ACB
Since they are similar triangles,
the sides are proportional Thus, we have,

AEAB=ADAC=DEBC..(i)

Consider ΔABC

By applying Pythagoras Theorem, we have, AB2+BC2=AC2

AB2+52=132AB2+25=169
AB2=16925=144
AB=12 cm

From equation (1), we have

412=AD13=DE5

13=AD13

AD=133 cm=4.33 cm

Also, 412=DE5

DE=2012=53 cm=1.67 cm


(iii) We need to find the area of ΔADE and quadrilateral BCED

Area of ΔADE=12×AE×DE

=12×4×53

=103 cm2

Area of quadrilateral BCED=Area of ΔABC-Area of ΔADE

=12×BC×AB103

Area of quad. BCED= Area of ΔABC Area of ΔADE

=12×BC×AB103

=12×5×12103

=30103

=90103=803 cm2

Thus ratio of areas of ΔADE to quadrilateral

BCED=103803=18


Question 16

Two isosceles triangles have equal vertical angles and their areas are in the ratio 7 : 16. Find the ratio of their corresponding height.
Sol :
In two isosceles ∆s ABC and DEF









A=D (given)

B+C=E+F

But B=C and E=F

(opposite angles of equal sides)

B=E and C=F

ΔABCΔDEF

 area of ΔABC area of ΔDEF=AL2DM2

(Cor. of theorem 13.1)

AL2DM2=716

ALDM=74

Hence AL:DM=7:4

Question 17

On a map drawn to a scale of 1 : 250000, a triangular plot of land has the following measurements :
AB = 3 cm, BC = 4 cm and ∠ABC = 90°. Calculate
(i) the actual length of AB in km.
(ii) the area of the plot in sq. km:
Sol :
Scale factor k = 1 : 250000 = 1250000

Length on map,

AB = 3 cm, BC = 4 cm

Length of AB of Actual plot =1k (Length of AB on the map)

=250000 (3 cm)

=250000×3100×1000 km=152=75 km


(ii) Area of plot on the map =12×AB×BC

=12×3×4=6 cm2

Area of actual plot =1k2×6 cm2

=(250000)2×6 cm2

=250000×250000×6100000×100000 km2

=254×6=752=375 km2


Question 18

On a map drawn to a scale of 1 : 25000, a rectangular plot of land, ABCD has the following measurements AB = 12 cm and BG = 16 cm.
Calculate:
(i) the distance of a diagonal of the plot in km.
(ii) the area of the plot in sq. km.
Sol :
Scale factor (k)=125000

Measurements of plot ABCD on the map are

AB = 12 cm and BC = 16 cm.









Diagonal AC=AB2+BC2
=(12)2+(16)2=144+256
=400=20 cm

and area=AB×BC
=12 cm×16 cm=192 cm2


(i) Now actual length of AC=1k

(Length of AC on map)

=25000×20 cm=25000×20100×1000 km

=5 km

(ii) Area of plot =(1k)2 (Area of plot on map)



Question 19

The model of a building is constructed with the scale factor 1 : 30.
(i) If the height of the model is 80 cm, find the actual height of the building in metres.
(ii) If the actual volume of a tank at the top of the building is 27 m³, find the volume of the tank on the top of the model. (2009)
Sol :
(i)  Height of model  Height of actual building =130

80H=130

H=2400 cm=24 m


(ii)  Volume of model  Volume of tank =(130)3

V27=127000

V=11000 m3=1000 cm3


Question 20

A model of a ship is made to a scale of 1 : 200.
(i) If the length of the model is 4 m, find the length of the ship.
(ii) If the area of the deck of the ship is 160000 m², find the area of the deck of the model.
(iii) If the volume of the model is 200 litres, find the volume of the ship in m³.
(100 litres = m³)
Sol :
Scale = 1 : 200
(i) Length of a model of ship = 4 m

Length of the ship =4×2001=800 m


(ii) Area of deck of ship =160000 m2

Area of deck of the model

=160000×(1200)2 m2

=160000×140000=4 m2


(iii) Volume of the model of the ship =200 l

Volume of ship =200×(2001)3l

=200×8000000l

=200×80000001000 m3=1600000 m3

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2