ML Aggarwal Solution Class 10 Chapter 15 Circles MCQs
MCQs
Question 1
In the given figure, O is the centre of the circle. If ∠ABC = 20°, then ∠AOC is equal to
(a) 20°
(b) 40°
(c) 60°
(d) 10°
Question 2
In the given figure, AB is a diameter of the circle. If AC = BC, then ∠CAB is. equal to
(a) 30°
(b) 60°
(c) 90°
(d) 45°
But $\angle \mathrm{A}+\angle \mathrm{B}=90^{\circ}$
$\therefore \angle A=\angle B=\frac{90^{\circ}}{2}=45^{\circ}$
$\therefore \angle C A B=45^{\circ}$
Ans (d)
Question 3
In the given figure, if ∠DAB = 60° and ∠ABD = 50° then ∠ACB is equal to
(a) 60°
(b) 50°
(c) 70°
(d) 80°
Question 4
In the given figure, O is the centre of the circle. If ∠OAB = 40°, then ∠ACB is equal to
(a) 50°
(b) 40°
(c) 60°
(d) 70°
$\therefore \angle A O B=180^{\circ}-\left(40^{\circ}+40^{\circ}\right)$
$=180^{\circ}-80^{\circ}=100^{\circ}$
But arc AB subtends $\angle \mathrm{AOB}$ at the centre and $\angle \mathrm{ACB}$ at the remaining part of the circle
$\therefore \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{AOB}=\frac{1}{2} \times 100^{\circ}=50^{\circ}$
Ans (a)
Question 5
ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and ∠ADC = 140°, then ∠BAC is equal to
(a) 80°
(b) 50°
(c) 40°
(d) 30°
Sol :
ABCD is a cyclic quadrilateral,
AB is the diameter of the circle circumscribing it
∠ADC = 140°, ∠BAC = Join AC
Question 6
In the given figure, O is the centre of the circle. If ∠BAO = 60°, then ∠ADC is equal to
(a) 30°
(b) 45°
(c) 60°
(d) 120°
$\therefore \angle \mathrm{ABO}=\angle \mathrm{BAO}=60^{\circ}$
Ext. $\angle \mathrm{AOC}=\angle \mathrm{BAO}+\angle \mathrm{ABO}$
$=60^{\circ}+60^{\circ}=120^{\circ}$
Now arc AC subtends $\angle \mathrm{AOC}$ at the centre and $\angle \mathrm{ADC}$ at the remaining part of the circle
$\therefore \angle A O C=2 \angle A D C \Rightarrow 2 \angle A D C=120^{\circ}$
$\Rightarrow \angle \mathrm{ADC}=\frac{120^{\circ}}{2}=60^{\circ}$
Ans (c)
Question 7
In the given figure, O is the centre of the circle. If ∠AOB = 90° and ∠ABC = 30°, then ∠CAO is equal to
(a) 30°
(b) 45°
(c) 90°
(d) 60°
In $\Delta \mathrm{AOB}$
Arc AB subtends $\angle A O B$ at the centre and $\angle \mathrm{ACB}$ at the remaining part of the circle
$\therefore \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{AOB}=\frac{1}{2} \times 90^{\circ}=45^{\circ}$
Now in $\Delta \mathrm{ACB}, \angle \mathrm{ABC}=30^{\circ}, \angle \mathrm{ACB}=45^{\circ}$
$\therefore \angle B A C=180^{\circ}-\left(30^{\circ}+45^{\circ}\right)$
$=180^{\circ}-75^{\circ}=105^{\circ}$
But $\angle \mathrm{OAB}=45^{\circ}$
∠CAO = 105° – 45° = 60°
Ans (d)
Question 8
In the given figure, O is the centre of a circle. If the length of chord PQ is equal to the radius of the circle, then ∠PRQ is
(a) 60°
(b) 45°
(c) 30°
(d) 15°
Question 9
In the given figure, if O is the centre of the circle then the value of x is
(a) 18°
(b) 20°
(c) 24°
(d) 36°
(Angles in the same segment)
arc $\mathrm{AB}$ subtends $\angle \mathrm{AOB}$ at the centre and $\angle \mathrm{ADB}$ at the remaining part of the circle
$\therefore \angle \mathrm{AOB}=2 \angle \mathrm{ADB}=2 \times 2 x=4 x$
$\operatorname{In} \Delta \mathrm{OAB}$
$\angle \mathrm{OAB}=\angle \mathrm{OBA}=3 x(\mathrm{OA}=\mathrm{OB})$
Sum of angles of $\Delta \mathrm{OAB}=180^{\circ}$ $\Rightarrow 3 x+3 x+4 x=180^{\circ}$
$\Rightarrow 10 x=180^{\circ}$
$\Rightarrow x=\frac{180^{\circ}}{10}=18^{\circ}$
$\therefore x=18^{\circ}$
Ans (a)
Question 10
From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is
(a) 7 cm
(b) 12 cm
(c) 15 cm
(d) 24.5 cm
Sol :
From Q, length of tangent PQ to the circle = 24 cm
and QO = 25 cm
∴Radius of the circle=7 cm
Ans (a)
Question 11
From a point which is at a distance of 13 cm from the centre O of a circle of radius 5 cm, the pair of tangents PQ and PR to the circle are drawn. Then the area of the quadrilateral PQOR is
(a) 60 cm²
(b) 65 cm²
(c) 30 cm²
(d) 32.5 cm²
Sol :
Let point P is 13 cm from O, the centre of the circle
Radius of the circle (OQ) = 5 cm
PQ and PR are tangents from P to the circle
Join OQ and OR
Now area of $\Delta \mathrm{OPQ}=\frac{1}{2} \mathrm{PQ} \times \mathrm{OQ}$
$\left(\frac{1}{2}\right.$ base $\times$ height $)$
$=\frac{1}{2} \times 12 \times 5=30 \mathrm{~cm}^{2}$
$\therefore$ area of quad. $\mathrm{PQOR}=2 \times 30=60 \mathrm{~cm}^{2}$
(a)
Question 12
If angle between two radii of a circle is 130°, the angle between the tangents at the ends of the radii is
(a) 90°
(b) 50°
(c) 70°
(d) 40°
Sol :
Angles between two radii OA and OB = 130°
From A and B, tangents are drawn which meet at P
$\therefore \angle A O B+\angle A P B=180^{\circ}$
$\Rightarrow 130^{\circ}+\angle A P B=180^{\circ}$
$\Rightarrow \angle A P B=180^{\circ}-130^{\circ}=50^{\circ}$
Ans (b)
Question 13
In the given figure, PQ and PR are tangents from P to a circle with centre O. If ∠POR = 55°, then ∠QPR is
(a) 35°
(b) 55°
(c) 70°
(d) 80°
Question 14
If tangents PA and PB from an exterior point P to a circle with centre O are inclined to each other at an angle of 80°, then ∠POA is equal to
(a) 50°
(b) 60°
(c) 70°
(d) 100°
Sol :
Length of tangents PA and PB to the circle from a point P
outside the circle with centre O, and inclined an angle of 80°
$\therefore \angle \mathrm{OAP}=90^{\circ}$ and $\angle \mathrm{OPA}=\frac{1}{2} \angle \mathrm{APB}$
$=\frac{1}{2} \times 80^{\circ}=40^{\circ}$
$=\frac{1}{2} \times 80^{\circ}=40^{\circ}$
Ans (a)
Question 15
In the given figure, PA and PB are tangents from point P to a circle with centre O. If the radius of the circle is 5 cm and PA ⊥ PB, then the length OP is equal to
(a) 5 cm
(b) 10 cm
(c) 7.5 cm
(d) 5√2 cm
$\therefore \angle \mathrm{APO}=90^{\circ} \times \frac{1}{2}=45^{\circ}$
$\therefore \angle \mathrm{AOP}=90^{\circ}-45^{\circ}=45^{\circ}$
i.e. OA=AP=5 cm
$\therefore \mathrm{OP}=\sqrt{\mathrm{OA}^{2}+\mathrm{PA}^{2}}=\sqrt{5^{2}+5^{2}}$
$=\sqrt{25+25}=\sqrt{50}=\sqrt{2 \times 25}$
$=\sqrt{2 \times 5} \mathrm{~cm}=5 \sqrt{2} \mathrm{~cm}$
Ans (d)
Question 16
At one end A of a diameter AB of a circle of radius 5 cm, tangent XAY is drawn to the circle. The length of the chord CD parallel to XY and at a distance 8 cm from A is
(a) 4 cm
(b) 5 cm
(c) 6 cm
(d) 8 cm
Sol :
AB is the diameter of a circle with radius 5 cm
At A, XAY is a tangent to the circle
CD || XAY at a distance of 8 cm from A
Join OC
Ans (d)
Question 17
If radii of two concentric circles are 4 cm and 5 cm, then the length of each chord of one circle which is tangent to the other is
(a) 3 cm
(b) 6 cm
(c) 9 cm
(d) 1 cm
Sol :
Radii of two concentric circles are 4 cm and 5 cm
AB is a chord of the bigger circle
which is tangent to the smaller circle at C.
Join OA, OC
$\mathrm{OC}=4 \mathrm{~cm}, \mathrm{OA}=5 \mathrm{~cm}$
and $\mathrm{OC} \perp \mathrm{ACB}$
$\therefore$ In right $\Delta \mathrm{OAC}$
$\mathrm{OA}^{2}=\mathrm{OC}^{2}+\mathrm{AC}^{2} \Rightarrow 5^{2}=4^{2}+\mathrm{AC}^{2}$
$\Rightarrow 25=16+\mathrm{AC}^{2} \Rightarrow \mathrm{AC}^{2}=25-16=9=(3)^{2}$
$\therefore \mathrm{AC}=3 \mathrm{~cm}$
$\therefore$ Length of chord $\mathrm{AB}=2 \times \mathrm{AC}$
$=2 \times 3=6 \mathrm{~cm}$
Ans (b)
Question 18
In the given figure, AB is a chord of the circle such that ∠ACB = 50°. If AT is tangent to the circle at the point A, then ∠BAT is equal to
(a) 65°
(b) 60°
(c) 50°
(d) 40°
Question 19
$\angle \mathrm{RPQ}=50^{\circ}$
$\because$ OP is radius and $\mathrm{PR}$ is tangent to the circle
$\therefore$ OP $\perp P R$
But $\angle \mathrm{OPQ}+\angle \mathrm{RPQ}=90^{\circ}$
$\Rightarrow \angle \mathrm{OPQ}+50^{\circ}=90^{\circ}$
$\Rightarrow \angle \mathrm{OPQ}=90^{\circ}-50^{\circ}=40^{\circ}$
$\because \mathrm{OP}=\mathrm{OQ} \quad$ (radii of the same circle)
$\therefore \angle \mathrm{OQP}=\angle \mathrm{OPQ}=40^{\circ}$
and $\angle \mathrm{POQ}=180^{\circ}-(\angle \mathrm{OPQ}+\angle \mathrm{OQP})$
$=180^{\circ}-\left(40^{\circ}+40^{\circ}\right)$
$=180^{\circ}-80^{\circ}=100^{\circ}$
Ans (a)
Question 20
In the given figure, PA and PB are tangents to a circle with centre O. If ∠APB = 50°, then ∠OAB is equal to
(a) 25°
(b) 30°
(c) 40°
(d) 50°
Ans (a)
Question 21
In the given figure, sides BC, CA and AB of ∆ABC touch a circle at point D, E and F respectively. If BD = 4 cm, DC = 3 cm and CA = 8 cm, then the length of side AB is
(a) 12 cm
(b) 11 cm
(c) 10 cm
(d) 9 cm
$\therefore \mathrm{BF}=\mathrm{BD}=4 \mathrm{~cm}$
Similarly, $\mathrm{CD}=\mathrm{CE}=3 \mathrm{~cm}$
$\therefore \mathrm{AE}=\mathrm{AC}-\mathrm{CE}=8-3=5 \mathrm{~cm}$
and $\mathrm{AF}=\mathrm{AE}=5 \mathrm{~cm}$
Now $\mathrm{AB}=\mathrm{AF}+\mathrm{BF}=5+4=9 \mathrm{~cm}$
Ans (d)
Question 22
In the given figure, sides BC, CA and AB of ∆ABC touch a circle at the points P, Q and R respectively. If PC = 5 cm, AR = 4 cm and RB = 6 cm, then the perimeter of ∆ABC is
(a) 60 cm
(b) 45 cm
(c) 30 cm
(d) 15 cm
and BP=BR=6 cm
Now AB=AR+BR=4+6=10 cm
$\mathrm{BC}=\mathrm{BP}+\mathrm{CP}=6+5=11 \mathrm{~cm}$
AC=AQ+CQ=4+5=9 cm
$\therefore$ Perimeter of the $\Delta \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$
=10+11+9=30 cm
Ans (c)
Question 23
PQ is a tangent to a circle at point P. Centre of circle is O. If ∆OPQ is an isosceles triangle, then ∠QOP is equal to
(a) 30°
(b) 60°
(c) 45°
(d) 90°
Sol :
PQ is tangent to the circle at point P centre of the circle is O.
Comments
Post a Comment