ML Aggarwal Solution Class 10 Chapter 17 Mensuration Exercise 17.5
Exercise 17.5
Question 1
The diameter of a metallic sphere is 6 cm. The sphere is melted and drawn into a wire of uniform cross-section. If the length of the wire is 36 m, find its radius.
Sol :
Diameter of metallic sphere = 6 cm
Volume =43πr3
=43×π×(3)3 cm3
=43π×3×3×3 cm3=36πcm3
∴ Volume of wire =36πcm3
Length of wire (h)=36 m
Let r be the radius of the wire
∴πr2h=36π
r2×36×100=36
r2=1100=(110)2
r=110 cm=1 mm
Question 2
The radius of a sphere is 9 cm. It is melted and drawn into a wire of diameter 2 mm. Find the length of the wire in metres.
Sol :
Radius of sphere = 9 cm
=43π×9×9×9 cm3=972πcm3
Diameter of wire =2 mm
∴ Radius (r)=22=1 mm=110 cm
Let h be the length of wire then
πr2h=972π
110×110×h=972
⇒h=972×10×10
h = 97200 cm = 972 m
Length of wire = 972 m
Question 3
A solid metallic hemisphere of radius 8 cm is melted and recasted into right circular cone of base radius 6 cm. Determine the height of the cone.
Sol :
Radius of a solid hemisphere (r) = 8 cm
=23×512π=10243πcm3
Radius (r)=6 cm
∴ Height (h)= Volume 13πr2=1024π×33×1×π×6×6
=2569 cm=2849 cm
Question 4
A rectangular water tank of base 11 m x 6 m contains water upto a height of 5 m. if the water in the tank is transferred to a cylindrical tank of radius 3.5 m, find the height of the water level in the tank.
Sol :
Base of a water tank = 11 m × 6 m
Height of water level in it (h) = 5 m
Volume of water =11 × 6 × 5 = 330 m³
Volume of water in the cylindrical tank
Radius of its base =3.5 m=72 m
∴ Height of water level = Volume πr2
=330×7×2×222×7×7 m
=607 m=847 m
Question 5
The rain water from a roof of dimensions 22 m x 20 m drains into a cylindrical vessel having diameter of base 2 m and height; 3.5 m. If the rain water collected from the roof just fill the cylindrical vessel, then find the rainfall in cm.
Sol :
Dimensions of roof = 22 m × 20 m
Let rainfall = x m
.’. Volume of water = 22 × 20 × x m³
Volume of water in cylinder = 22 × 20 × x m³
Diameter of its base = 2 m
∴ Radius =22=1 m
and height of water level =3.5 m=72 m
∴ Volume of water =πr2h
=227×1×1×72 m3=11 m3
∴ Volume of water in cylinder = Volume of water
22×20×x=11
x=1122×20 m=140 m=140×100
=52 cm=2.5 cm
∴ Rainfall =2.5 cm
Question 6
The volume of a cone is the same as that of the cylinder whose height is 9 cm and diameter 40 cm. Find the radius of the base of the cone if its height is 108 cm.
Sol :
Diameter of a cylinder = 40 cm
Height(h) = 9 cm
∴ Radius =√ Volume ×31×πh
=√3600π×3π×108=√100=10 cm
Question 7
Eight metallic spheres, each of radius 2 cm, are melted and cast into a single sphere. Calculate the radius of the new (single) sphere.
Sol :
Radius of each metallic sphere (r) = 2 cm
=43π×23 cm3
=323πcm3
and volume of 8 such spheres =323π×8 cm3
=2563πcm3
Now volume of a single sphere =2563πcm3
∴ Radius of new sphere =3√ Volume 4π
=(256π3×34×π)13 cm=(64)13=4 cm
Question 8
A metallic disc, in the shape of a right circular cylinder, is of height 2.5 mm and base radius 12 cm. Metallic disc is melted and made into a sphere. Calculate the radius of the sphere.
Sol :
Height of disc cylindrical shaped = 2.5 mm
and base radius = 12 cm
Volume of the disc = πr²h
=π×12×12×2.510 cm
=144π×25100=36πcm3
Now volume of sphere =36πcm3
∴ Radius =( Volume 43π)13
=(36π×34×π)13=(27)13=3 cm
Question 9
Two spheres of the same metal weigh 1 kg and 7 kg. The radius of the smaller sphere is 3 cm. The two spheres are melted to form a single big sphere. Find the diameter of the big sphere.
Sol :
Weight of first sphere = 1 kg
and weight of second sphere = 7 kg
Radius of smaller sphere = 3 cm
Let r be the radius of a larger sphere
36π×34πR3=18
27R3=18⇒R3=27×8=(3×2)3
R = 3 x 2 = 6 cm
Diameter of big sphere = 2 x 6 = 12 cm
Question 10
A hollow copper pipe of inner diameter 6 cm and outer diameter 10 cm is melted and changed into a solid circular cylinder of the same height as that of the pipe. Find the diameter of the solid cylinder.
Sol :
Inner diameter of a hollow pipe = 6 cm
and outer diameter = 10 cm
and outer radius (R)=102=5 cm
Let height of the pipe =h cm and r be the solid cylinder
∴ Volume of pipe =π(R2−r2)h
=π(52−32)h
∴πh(25−9)=πR2h
16=R2
⇒R=√16=4
∴ Diameter of solid cylinder
=4×2=8 cm
Question 11
A solid sphere of radius 6 cm is melted into a hollow cylinder of uniform thickness. If the external radius of the base of the cylinder is 4 cm and height is 72 cm, find the uniform thickness of the cylinder.
Sol :
Radius of a solid sphere (r) = 6 cm
=43×216π=288πcm3
∴ Volume of hollow cylinder =288πcm3
External radius (R)=4 cm
Height (h)=72 cm
Let internal radius =r, then
Volume =πh(R2−r2)
⇒288π=π×72(42−r2)
4=16−r2
⇒r2=16−4=12
r=√12=2√3=2(1.732)=3.464 cm
∴ Thickness =R−r=4−3.464=0.536 cm
Question 12
A hollow metallic cylindrical tube has an internal radius of 3 cm and height 21 cm. The thickness of the metal of the tube is 12 cm . The tube is melted and cast into a right circular cone of height 7 cm. Find the radius of the cone correct to one decimal place.
Internal radius of a hollow metallic cylindrical tube (r) = 3 cm
and height (h) = 21 cm
∴ External radius (R)=3+0.5=3.5 cm
∴ Volume of metallic tube =πh(R2−r2)
=π×21[(3.5)2−3.02]cm3
=21π[12.25−9]=21π×3.25 cm3
=21×3.25πcm3
Now volume of circular cone =21×3.25πcm3
Height of cone =7 cm
∴ Radius =( Volume 13πh)12
=(21×3.25π×3π×7)12=(29.25)12=5.4 cm
Question 13
A hollow sphere of internal and external diameters 4 cm and 8 cm respectively, is melted into a cone of base diameter 8 cm. Find the height of the cone. (2002)
Sol :
Internal diameter of a hollow sphere = 4 cm
and external diameter = 8 cm
Internal radius (r) = 2 cm
and external radius (R) = 4 cm
Volume of hollow sphere
=43π(64−8)=56×43π
=2243πcm3
Diameter of cone =8 cm
Radius =4 cm
Let the height of the cone be h cm
∴ Volume of the cone = Volume of the metal
13πr2.h=2243πcm3
h=224×π×33×π×4×4=14 cm
∴ The height of the cone is 14 cm
Question 14
A well with inner diameter 6 m is dug 22 m deep. Soil taken out of it has been spread evenly all round it to a width of 5 m to form an embankment. Find the height of the embankment.
Sol :
Inner diameter of a well = 6 m
Depth (h) = 22 m
∴55πh=198π
h=198π55π=3.6 m
Hence height of embankment =3.6 m
Question 15
A cylindrical can of internal diameter 21 cm contains water. A solid sphere whose diameter is 10.5 cm is lowered into the cylindrical can. The sphere is completely immersed in water. Calculate the rise in water level, assuming that no water overflows.
Sol :
Internal diameter of cylindrical can = 21 cm
Diameter of a solid sphere =10.5 cm
∴ Radius (r)=10.52=5.25 cm
∴ Volume of sphere =43πr3
=43π(5.25)3 cm3
Let rise of water in cylindrical can =h
∴πR2h=43π(5.25)3
212×212h=43×5.25×5.25×5.25
212×212h=43×214×214×214
∴h=43×214×214×214×221×221
=74m=1.75 m
Question 16
There is water to a height of 14 cm in a cylindrical glass jar of radius 8 cm. Inside the water there is a sphere of diameter 12 cm completely immersed. By what height will the water go down when the sphere is removed?
Sol :
Radius of the cylindrical jar (R) = 8 cm
Height of water level (h) = 14 cm
Volume of water = πR²h
Diameter of sphere =12 cm
∴ Radius (r)=122=6 cm
Volume =43πr3=43π×6×6×6 cm3
=288πcm3
By immersing the sphere in the cylinder water rose up =288πcm3
∴ Let height of water rose =h cm
h=288ππ×8×8=92 cm
∴π×8×8×h=288π
h=288ππ×8×8=92 cm
∴ Water rise =92=4.5 cm
Question 17
A vessel in the form of an inverted cone is filled with water to the brim. Its height is 20 cm and diameter is 16.8 cm. Two equal solid cones are dropped in it so that they are fully submerged. As a result, one-third of the water in the original cone overflows. What is the volume of each of the solid cone submerged? (2002)
Sol :
Height of conical vessel (h) = 20 cm
and diameter = 16.8 cm
Volume of water filled in it
=13πr2h=13π×8.4×8.4×20 cm3
=13×227×8.4×8.4×20 cm3
=1478.4 cm3
∴13% volume of water =1478.4×13
=492.8 cm3
∴ Volume of two equal solid cones =492.8 cm3
and volume of one cone =492.82
=246.4 cm3
Question 18
A solid metallic circular cylinder of radius 14 cm and height 12 cm is melted and recast into small cubes of edge 2 cm. How many such cubes can be made from the solid cylinder?
Sol :
Radius of a solid metallic cylindrical (r) = 14 cm
and height (h) = 12 cm
=7392 cm3
Volume of one cube =(2 cm)3=8 cm3
∴ Number of cube so formed =73928=924
Question 19
How many shots each having diameter 3 cm can be made from a cuboidal lead solid of dimensions 9 cm x 11 cm x 12 cm?
Sol :
Diameter of a shot = 3 cm
Volume of one shot =43πr3
=43×227×(32)3 cm3
=8821×278 cm3
Dimensions of a cuboidal lead
=9 cm×11 cm×12 cm
∴ Volume =9×11×12=1188 cm3
∴ Number of shots to be made =11888821×278
=1188×21×888×27=84 shots
Question 20
How many spherical lead shots of diameter 4 cm can be made out of a solid cube of lead whose edge measures 44 cm?
Sol :
Diameter of lead shot = 4 cm
=43×227×2×2×2 cm3
=70421 cm3
Edge (side) of a solid cube =44 cm
∴ Volume =(a)3=44×44×44 cm3
Number of lead shots to be made
=44×44×4470421
=44×44×44×21704
=2541 shots
Question 21
Find the number of metallic circular discs with 1.5 cm base diameter and height 0.2 cm to be melted to form a circular cylinder of height 10 cm and diameter 4.5 cm.
Sol :
Radius of the circular disc (r) = 0.75 cm
Height of circular disc (h) = 0.2 cm
Radius of cylinder (R) = 2.25 cm
Height of cylinder (H) = 10 cm
Now,
= Volume of cylinder Volume of each circular disc
=πR2Hπr2h=R2Hr2h
=(2.25)2(10)(0.75)2(0.2)=2.25×2.25×100.75×0.75×0.2
=225×2.25×10×100×100×1075×75×2×100×100=450 shots
Question 22
A solid metal cylinder of radius 14 cm and height 21 cm is melted down and recast into spheres of radius 3.5 cm. Calculate the number of spheres that can be made.
Sol :
Radius of a solid metallic cylinder (r) = 14 cm
and height (h) = 21 cm
Volume of cylinder = πr²h
Question 23
Radius of each cone (r1)=3.5 cm
and height (h)=3 cm
∴ Volume of one cone =13πr21h
=13π×3.5×3.5×3 cm3=12.25πcm3
∴ Number of cones so formed =1543.5π12.25π
=126 cones
Question 24
A certain number of metallic cones each of radius 2 cm and height 3 cm are melted and recast in a solid sphere of radius 6 cm. Find the number of cones. (2016)
Sol :
Radius of each cone (r) = 2 cm
and height (h) = 3 cm
=13π×2×2×3=4πcm3
Radius of a solid sphere (R)=6 cm
∴ Volume =43πr3
=43π×6×6×6 cm3
=288πcm3
∴ Number of cones required =288π4π
=72 cones
Question 25
A vessel is in the form of an inverted cone. Its height is 11 cm and the radius of its top, which is open, is 2.5 cm. It is filled with water upto the rim. When some lead shots, each of which is a sphere of radius 0.25 cm, are dropped into the vessel, 25 of the water flows out. Find the number of lead shots dropped into the vessel. (2003)
Sol :
Radius of the top of the inverted conical vessel (R) = 2.5 cm
and height (h)= 11 cm
=13π(2.5)2×11 cm2
=113π×6.25 cm3
spherical shot =0.25 cm=14 cm
Volume of water flows out
=25 of 113π×6.25 cm3=137.515πcm3
and volume of one shot =43πr3
=43π×14×14×14 cm3
=π48 cm3
∴ Number of shots required =137.5π×4815×π
=440 shots
Question 26
The surface area of a solid metallic sphere is 616 cm². It is melted and recast into smaller spheres of diameter 3.5 cm. How many such spheres can be obtained? (2007)
=√616×74×22 cm=√49=7 cm
∴ Volume =43πr3=43×227×7×7×7 cm3
=43123 cm3
Diameter of smaller sphere =3.5 cm
∴ Radius (r)=3.52=74 cm
Volume =43πr3
∴ Number of smaller spheres =43123÷53924
=43123×24539=64 spheres
Question 27
The surface area of a solid metallic sphere is 1256 cm². It is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm. Calculate
(i) the radius of the solid sphere.
(ii) the number of cones recast. (Use π = 3.14).
Sol :
Surface area of a solid metallic sphere = 1256 cm²
=√12564×3.14 cm=√314×100314
=√100=10 cm
Radius of a solid cone (r1)=2.5 cm and height (h)=8 cm
∴ Volume =13πr2h
=13(3.14)×2.5×2.5×8 cm3=1573 cm3
(ii) Volume of solid sphere =43πr3
=43×3.14×10×10×10 cm3
=125603 cm3
∴ Number of cones formed
=125603÷1573
=125603×3157=80 cones
Question 28
Water is flowing at the rate of 15 km/h through a pipe of diameter 14 cm into a cuboid pond which is 50 m long and 44 m wide. In what time will the level of water in the pond rise by 21 cm?
Question 29
Height of water level =89.83×722×3.5×3.5
=2.32 cm
=213=73 cm
Comments
Post a Comment