ML Aggarwal Solution Class 10 Chapter 18 Trigonometric Identities MCQs
MCQs
Question 1
$\cot ^{2} \theta-\frac{1}{\sin ^{2} \theta}$ is equal to
(a) 1
(b) -1
$\frac{\cos ^{2} \theta-1}{\sin ^{2} \theta}=\frac{-\sin ^{2} \theta}{\sin ^{2} \theta}=-1$
Ans (b)
Question 2
$\left(\sec ^{2} \theta-1\right)\left(1-\operatorname{cosec}^{2} \theta\right)$ is equal to
(a) – 1
(b) 1
(c) 0
(d) 2
$=\left(\frac{1}{\cos ^{2} \theta}-1\right)\left(1-\frac{1}{\sin ^{2} \theta}\right)$
$=\frac{1-\cos ^{2} \theta}{\cos ^{2} \theta} \times \frac{\sin ^{2} \theta-1}{\sin ^{2} \theta}$
$=\frac{-\sin ^{2} \theta \cos ^{2} \theta}{\sin ^{2} \theta \cos ^{2} \theta}=-1$
$\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right)$
Ans (a)
Question 3
$\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}$ is equal to
(a) $2 \sin ^{2} \theta$
(b) $2 \cos ^{2} \theta$
(c) $\sin ^{2} \theta$
(d) $\cos ^{2} \theta$
Sol :
$\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}$
$\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}$
$=\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}$
$=\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}}$
$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \times \frac{\cos ^{2} \theta}{\sin ^{2} \theta+\cos ^{2} \theta}$
$\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right)$
$=\frac{\sin ^{2} \theta}{1}=\sin ^{2} \theta$
Ans (c)
Question 4
$(\cos \theta+\sin \theta)^{2}+(\cos \theta-\sin \theta)^{2}$ is equal to
(a) – 2
(b) 0
(c) 1
(d) 2
$=2 \times 1=2(d)$
$\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right)$
Question 5
(sec A + tan A) (1 – sin A) is equal to
(a) sec A
(b) sin A
(c) cosec A
(d) cos A
Sol :
(sec A + tan A) (1 – sin A)
$=\left(\frac{1}{\cos A}+\frac{\sin A}{\cos A}\right)(1-\sin A)$
$=\frac{1+\sin \mathrm{A}}{\cos \mathrm{A}} \times 1-\sin \mathrm{A}$
$=\frac{(1+\sin \mathrm{A})(1-\sin \mathrm{A})}{\cos \mathrm{A}}$
$=\frac{1-\sin ^{2} A}{\cos A}=\frac{\cos ^{2} A}{\cos A}=\cos A$
Ans (d)
Question 6
$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}$ is equal to
(a) $\sec ^{2} A$
(b) -1
(c) $\cot ^{2} A$
(d) $\tan ^{2} A$
Sol :
$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}$
$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=\frac{1+\frac{\sin ^{2} A}{\cos ^{2} A}}{1+\frac{\cos ^{2} A}{\sin ^{2} A}}$
$=\frac{\frac{\cos ^{2} A+\sin ^{2} A}{\cos ^{2} A}}{\frac{\sin ^{2} A+\cos ^{2} A}{\sin ^{2} A}}=\frac{\frac{1}{\cos ^{2} A}}{\frac{1}{\sin ^{2} A}}$
$=\frac{1}{\cos ^{2} A} \times \frac{\sin ^{2} A}{1}$
$=\frac{\sin ^{2} A}{\cos ^{2} A}=\tan ^{2} A$
Ans (d)
Question 7
If sec θ – tan θ = k, then the value of sec θ + tan θ is
sec θ – tan θ = k
$\frac{1-\sin \theta}{\cos \theta}=k$
Squaring both sides, we get
$\left(\frac{1-\sin \theta}{\cos \theta}\right)^{2}=(k)^{2} \Rightarrow \frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}=k^{2}$
$=\frac{(1-\sin \theta)^{2}}{1-\sin ^{2} \theta}=k^{2}$
$\Rightarrow \frac{(1-\sin \theta)^{2}}{(1+\sin \theta)(1-\sin \theta)}=k^{2}$
$=\frac{1-\sin \theta}{1+\sin \theta}=k^{2}$
$\Rightarrow \frac{1+\sin \theta}{1-\sin \theta}=\frac{1}{k^{2}}$
$ \Rightarrow \sqrt{\frac{(1+\sin \theta)}{1-\sin \theta}}=\frac{1}{k}$
Multiplying and dividing by $(1+\sin \theta)$
$=\sqrt{\left[\frac{(1+\sin \theta)^{2}}{1-\sin ^{2} \theta}\right]}=\frac{1}{k}$
$\Rightarrow \sqrt{\left[\frac{(1+\sin \theta)^{2}}{\cos ^{2} \theta}\right]}=\frac{1}{k}$
$\frac{1+\sin \theta}{\cos \theta}=\frac{1}{k}=\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}=\frac{1}{k}$
$\Rightarrow \sec \theta+\tan \theta=\frac{1}{k}$
Ans (d)
Question 8
Which of the following is true for all values of θ (0° < θ < 90°):
Sol :
$\therefore \sec ^{2} \theta-\tan ^{2} \theta=1$ is true for all values of θ as it is an identity.
(0° < θ < 90°)
Ans (c)
Question 9
If θ is an acute angle of a right triangle, then the value of sin θ cos (90° – θ) + cos θ sin (90° – θ) is
(a) 0
(b) 2 sin θ cos θ
(c) 1
(c) $2 \sin ^{2} \theta$
Sol :
sin θ cos (90° – θ) + cos θ sin (90° – θ)
= sin θ sin θ + cos θ cos θ
{ ∵ sin(90° – θ) = cosθ, cos (90° – θ) = sin θ }
Ans (c)
Question 10
The value of cos 65° sin 25° + sin 65° cos 25° is
(a) 0
(b) 1
(b) 2
(d) 4
Sol :
cos 65° sin 25° + sin 65° cos 25°
= cos (90° – 25°) sin 25° + sin (90° – 25°) cos 25°
= sin 25° . sin 25° + cos 25° . cos 25°
Question 11
The value of $3 \tan ^{2} 26^{\circ}-3 \operatorname{cosec}^{2} 64^{\circ}$ is
(a) 0
(b) 3
(c) – 3
(d) – 1
Sol :
$3 \tan ^{2} 26^{\circ}-3 \operatorname{cosec}^{2} 64^{\circ}$
$=3 \tan ^{2} 26^{\circ}-3 \operatorname{cosec}\left(90^{\circ}-26^{\circ}\right)$
$=3 \tan ^{2} 26^{\circ}-3 \sec ^{2} 26^{\circ}$
$=3\left(\tan ^{2} 26^{\circ}-\sec ^{2} 26^{\circ}\right)$
$=3 \times(-1)=-3 $ $\left\{\because \sec ^{2} \theta-\tan ^{2} \theta=1\right\}$
Ans (c)
Question 12
The value of $\frac{\sin \left(90^{\circ}-\theta\right) \sin \theta}{\tan \theta}-1$ is
(a) $-\cot \theta$
(b) $-\sin ^{2} \theta$
(c) $-\cos ^{2} \theta$
(d) $-\operatorname{cosec}^{2} \theta$
Sol :
$\frac{\sin \left(90^{\circ}-\theta\right) \sin \theta}{\tan \theta}-1$
$=\frac{\cos \theta \sin \theta}{\frac{\sin \theta}{\cos \theta}}-1$
$=\frac{\sin \theta \cos \theta \times \cos \theta}{\sin \theta}-1$
$=\cos ^{2} \theta-1=-\left(1-\cos ^{2} \theta\right)$
$=-\sin ^{2} \theta$
Ans (b)
Comments
Post a Comment