ML Aggarwal Solution Class 10 Chapter 18 Trigonometric Identities Test
Test
Question 1
(i) If θ is an acute angle and cosec θ = √5 find the value of cot θ – cos θ.
(ii) If θ is an acute angle and tanθ=815 find the value of sec θ + cosec θ.
Sol :
(i) θ is an acute angle.
cosec θ = √5
∴sinθ=1√5
cosθ=√1−sin2θ
=√1−(1√5)2=√1−15
=√5−15=√45=2√5
Now, cotθ-cosθ=cosθsinθ−cosθ
=2√51√5−2√5=21−2√5
=2(1−1√5)=2(√5−1)√5
(ii) tanθ=815
In the figure,
tanθ=BCAB=815
∴BC=8,AB=15
∴AC=√AB2+BC2=√52+82
=√225+64=√289=17
∴secθ=ACAB=1715
cosecθ=ACBC=178
∴secθ+cosecθ=1715+178
=136+255120=391120=331120
Question 2
Evaluate the following:
(ii) sec29∘cosec61∘+ 2 cot 8° cot 17° cot 45° cot 73°0 cot 82° – 3(sin2 38° + sin2 52°)
(iii) sin222∘+sin268∘cos222∘+cos268∘+ sin2 63° + cos 63° sin 27°
Sol :
(i) 2×(cos220∘+cos270∘sin225∘+sin265∘)– tan 45° + tan 13° tan 23° tan 30° tan 67° tan 77°
=2[sin270∘+cos270sin225∘+cos225∘]−1+tan13∘tan −1+tan13∘tan
(90∘−13∘)tan23∘tan(90∘−23∘)×1√3
=2(11)−1+tan13cot13∘tan23∘cot23∘×1√3
=2−1+1×1×1√3
=2−1+1√3⋅
=1+1√3=√3+1√3
=(√3+1)√3√3×√3
=3+√33
(ii) sec29∘cosec61∘+2cot8∘cot17∘cot45∘cot
73∘cot82∘−3(sin238∘+sin252∘)
=sec29∘cosec(90∘−29∘)+2cot8∘×cot(90∘−8∘)×cot17∘×cot(90∘−17∘)cot45∘−3[sin238∘+sin2(90∘−38∘)]
=sec29∘sec29∘+2cot8∘tan8∘×cot17∘tan17∘×1−3(sin238∘+cos238∘)
=1+2×1×1×1−3×1=1+2−3=0
(iii) sin222∘+sin268∘cos222∘+cos268∘+sin263∘+cos63∘sin27∘
=sin222∘+sin2(90∘−22∘)cos222∘+cos2(90∘−22∘)+sin263∘+cos63∘sin(90∘−63∘)
=sin222∘+cos222∘cos222∘+sin222∘+sin263∘+cos63∘×cos63∘
=11+(sin263∘+cos263∘)
=1+1=2
Question 3
If 43(sec259∘−cot231∘)−22sin90∘+3tan256∘tan234∘=x2then find the value of x.
Sol :
Given
43(sec259∘−cot231∘)−22sin90∘+3tan256∘tan234∘=x2
⇒43[sec259∘−cot2(90∘−59∘)]−23sin90∘+3tan256∘tan2(90∘−56∘)=x3
=43[sec259∘−tan259∘]−23×1+3tan256∘cot256∘=x3
=43×1−23+3×1=x3
⇒43−23+3=x3
⇒4−2+93=x3
⇒113=x3
⇒x=11×33=11
∴x=11
Prove the following (4 to 11) identities, where the angles involved are acute angles for which the trigonometric ratios are defined:
Question 4
(i) cosA1−sinA+cosA1+sinA=2secA
(ii) cosAcosecA+1+cosAcosecA−1=2tanA
Sol :
(i) cosA1−sinA+cosA1+sinA=2secA
L.H.S=cosA1−sinA+cosA1+sinA
=cosA[11−sinA+11+sinA]
=cosA[1+sinA+1−sinA(1−sinA)(1+sinA)]
=cosA[21−sin2 A]=2cosAcos2 A
=2cosA=2secA=R.H.S
(ii) cosAcosecA+1+cosAcosecA−1=2tanA
L.H.S=cosAcosecA+1+cosAcosecA−1
=cosA[1cosecA+1+1cosecA−1]
=cosA[cosecA−1+cosecA+1(cosecA+1)(cosecA−1)]
=cosA[2cosecA]cosec2A−1=2cosAsinA(cot2A)
=2cotAcot2A=2cotA
=2 tan A= R.H.S
Question 5
(i) (cosθ−sinθ)(1+tanθ)2cos2θ−1=secθ
(ii) (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ) = 1.
=(cosθ−sinθ)(cosθ+sinθ)cosθ(2cos2θ−1)
=cos2θ−sin2θcosθ(2cos2θ−1)
=cos2θ−(1−cos2θ)cosθ(2cos2θ−1)
=cos2θ−1+cos2θcosθ(2cos2θ−1)
=2cos2θ−1cosθ(2cos2θ−1)
=1cosθ=secθ=R.H.S
(ii) (cosecθ−sinθ)(secθ−cosθ)(tanθ+cotθ)=1
(cosecθ−sinθ)(secθ−cosθ)(tanθ+cotθ)=1
L.H.S. =(cosecθ−sinθ)(secθ−cosθ)(tanθ+cotθ)
=(1sinθ−sinθ)(1cosθ−cosθ)(sinθcosθ+cosθsinθ)
=(1−sin2θsinθ)(1−cos2θcosθ)(sin2θ+cos2θsinθcosθ)
=(cos2θ×sin2θ)sinθcosθ×1sinθcosθ
=sin2cos2θsin2θcos2θ=1=R.H.S
Question 6
(ii) sin2θ+cos4θ=cos2θ+sin4θ
(ii) cotθcosecθ+1+cosecθ+1cotθ=2secθ
Sol :
L.H.S=sin2θ+cos4θ
=(1−cos2θ+cos4θ
=1−cos2θ+cos4θ
=1−cos2θ(1−cos2θ)
R.H.S=cos2θ+sin4θ
=1−sin2θ+sin4θ
=1−sin2θ(1−sin2θ)
=1−sin2θcos2θ
∴L.H.S=R.H.S
(ii) cotθcosecθ+1+cosecθ+1cotθ=2secθ
L.H.S=cotθcosecθ+1+cosecθ+1cotθ
=cosθsinθ1sinθ+1+1sinθ+1cosθsinθ
=cosθsinθ1+sinθsinθ+1+sinθsinθcosθsinθ
=cosθsinθ×sinθ1+sinθ+1+sinθsinθ×sinθcosθ
=cosθ1+sinθ+1+sinθcosθ
=cos2θ+1+sin2θ+2sinθ(1+sinθ)cosθ
=1+1+2sinθ(1+sinθ)cosθ=2+2sinθ(1+sinθ)cosθ
=2(1+sinθ)cosθ(1+sinθ)=2cosθ
=2 sec θ=R.H.S
Question 7
(i) sec4A(1−sin4A)−2tan2A=1
(ii) 1sinA+cosA+1+1sinA+cosA−1=secA+cosecA
Sol :
(i) sec4 A(1−sin4 A)−2tan2 A=1
L.H.S=sec4A(1−sin4A)−2tan2A
=1cos4A(1+sin2A)(1−sin2A)−2tan2A
[∵a2−b2=(a+b)(a−b)]
=(1+sin2A)cos2Acos4A−2sin2Acos2A
=1+sin2Acos2A−2sin2Acos2A
=1+sin2A−2sin2Acos2A
=1−sin2Acos2A
=cos2Acos2A=1
(∵1−sin2A=cos2A)
=R.H.S
(ii) 1sinA+cosA+1+1sinA+cosA−1
=sec A+cosec A
L.H.S=1sinA+cosA+1+1sinA+cosA−1
=sinA+cosA−1+sinA+cosA+1(sinA+cosA+1)(sinA+cosA−1)
=2(sinA+cosA)(sinA+cosA)2−(1)2
=2(sinA+cosA)sin2A+cos2A+2sinAcosA−1
=2(sinA+cosA)1+2sinAcosA−1
=2(sinA+cosA)2sinAcosA
=sinA+cosAsinAcosA
=sinAsinAcosA+cosAsinAcosA
=1cosA+1sinA
=sec A+cosec A=R.H.S
Question 8
(i) sin3θ+cos3θsinθcosθ+sinθcosθ=1
(ii) (secA−tanA)2(1+sinA)=1−sinA
Sol :
(i) sin3θ+cos3θsinθcosθ+sinθcosθ=1
L.H.S=sin3θ+cos3θsinθcosθ+sinθcosθ
=(sinθ+cosθ)(sin2θ−sinθcosθ+cos2θ)(sinθ+cosθ)+sinθcosθ
=sin2θ+cos2θ−sinθcosθ+sinθcosθ
=1=R.H.S
(ii) (secA−tanA)2(1+sinA)≐=1−sinA
L.H.S=(1cosA−sinAcosA)2(1+sinA)
=(1−sinAcosA)2(1+sinA)
=(1−sinA)2cos2A(1+sinA)
=(1−sinA)2(1+sinA)1−sin2 A
=(1−sinA)2(1+sinA)(1−sinA)(1+sinA)
=1-sin A=R.H.S
Question 9
(i) cosA1−tanA−sin2AcosA−sinA=sinA+cosA
(ii) (sec A – cosec A) (1 + tan A + cot A) = tan A sec A – cot A cosec A
(i) cosA1−tanA−sin2AcosA−sinA=sinA+cosA
L.H.S=cosA1−tanA−sin2AcosA−sinA
=cosA1−sinAcosA−sin2AcosA−sinA
=cosA×cosAcosA−sinA−sin2AcosA−sinA
=cos2AcosA−sinA−sin2AcosA−sinA
=cos2A−sin2AcosA−sinA
=(cosA+sinA)(cosA−sinA)(cosA−sinA)
=cos A+sin A
=sin A+cos A=R.H.S
(ii) (secA−cosecA)(1+tanA+cotA)=tanAsecA−cotAcosecA
L.H.S=(secA-cosecA)(1+tanA+cotA)
=(1cosA−1sinA)(1+sinAcosA+cosAsinA)
=sinA−cosAsinAcosA×sinAcosA+sin2A+cos2AsinAcosA
=sinA−cosAsinAcosA×sinAcosA+1sinAcosA
=(sinA−cosA)(sinAcosA+1)sin2Acos2A
=sinAcosA⋅1cosA−cosAsinA⋅1sinA
=sinAcos2A−cosAsin2A
=sin3A−cos3Asin2Acos2A
=(sinA−cosA)(sin2A+cos2A+sinAcosA)sin2Acos2A
=(sinA−cosA)(1+sinAcosA)sin2 Acos2 A
=(sinA−cosA)(sinAcosA+1)sin2 Acos2 A
∴L.H.S=R.H.S
(iii) tan2θtan2θ−1+cosec2θsec2θ−cosec2θ=1sin2θ−cos2θ
L.H.S=tan2θtan2θ−1+cosec2θsec2θ−cosec2θ
=sin2θcos2θsin2θcos2θ−1+1sin2θ1cos2θ−1sin2θ
=sin2θcos2θ×cos2θsin2θ−cos2θ+1sin2θsin2θ−cos2θsin2θcos2θ
=sin2θsin2θ−cos2θ+sin2θcos2θsin2θ(sin2θ−cos2θ)
=sin2θsin2θ−cos2θ+cos2θsin2θ−cos2θ
=sin2θ+cos2θsin2θ−cos2θ=1sin2θ−cos2θ
=R.H.S
Question 10
sinA+cosAsinA−cosA+sinA−cosAsinA+cosA=2sin2A−cos2A=21−2cos2A=2sec2Atan2A−1
Sol :
sinA+cosAsinA−cosA+sinA−cosAsinA+cosA=2sin2A−cos2A=21−2cos2A=2sec2Atan2A−1
L.H.S=sinA+cosAsinA−cosA+sinA−cosAsinA+cosA
=(sinA+cosA)2+(sinA−cosA)2sin2 A−cos2 A
=2(sin2A+cos2A)sin2A−cos2A
=2×1sin2A−cos2A=2sin2A−cos2A
=R.H.S
Now, we have
=2sin2A−cos2A
=2sin2A−(1−sin2A)
=2sin2A−1+sin2A
=2sin2A−cos2A
=2cos2Asin2Acos2A−cos2Acos2A
=2sec2Atan2A−1
Question 11
2(sin6θ+cos6θ)−3(sin4θ+cos4θ)+1=θ
Sol :
2(sin6θ+cos6θ)−3(sin4θ+cos4θ)+1=θ
L.H.S==2(sin6θ+cos6θ)−3(sin4θ+cos4θ)+1
=2[(sin2θ)3+(cos2θ)3]−3[sin4θ+cos4θ]+1
=2[(sin2θ+cos2θ)(sin4θ+cos4θ−sin2θcos2θ)]−3[sin4θ+cos4θ]+1
=2(sin4θ+cos4θ−sin2θcos2θ)−3(sin4θ+cos4θ)+1
=−2sin2θcos2θ−sin4θ−cos4θ+1
=1−[sin4θ+cos4θ+2sin2θcos2θ]
=1−(sin2θ+cos2θ)2=1−1=0
=R.H.S
Question 12
If cot θ + cos θ = m, cot θ – cos θ = n, then prove that (m2−n2)2= 16 run.
∴tanθ=2m+n...(i)
Subtracting (ii) from (i)
2cosθ=m−n⇒cosθ=m−n2
∴secθ=2m−n...(ii)
Squaring and subtracting
sec2θ−tan2θ=(2m−n)2−(2m+n)2
1=4(m−n)2−4(m+n)2
⇒4[1(m−n)2−1(m+n)2]=1
⇒4[(m+n)2−(m−n)2(m+n)2(m−n)2]=1
⇒4(4mn)(m2−n2)2=1
⇒16mn(m2−n2)2=1
⇒(m2−n2)2=16mn
Question 13
If sec θ + tan θ = p, prove that sin θ = p2−1p2+1
Sol :
sec θ + tan θ = p,
prove that sin θ =p2−1p2+1
1cosθ+sinθcosθ=p
1+sinθcosθ=p
Squaring ,
(1+sinθ)2cos2θ=p2
⇒(1+sinθ)21−sin2θ=p2
⇒(1+sinθ)2(1−sinθ)(1+sinθ)=p2
⇒1+sinθ1−sinθ=p21
Applying componendo and dividendo
1+sinθ+1−sinθ1+sinθ−1+sinθ=p2+1p2−1
1+sinθ+1−sinθ1+sinθ−1+sinθ
=p2+1p2−1
∴sinθ=p2−1p2+1
Question 14
If tan A = n tan B and sin A = m sin B, prove that cos2A=m2−1n2−1
Sol :
m=sinAsinB
n=tanAtanB
1sinB=msinA
⇒cosecB=msinA
1tanB=ntanA
⇒cotB=ntanA
Now, cosec2B−cot2B=1
⇒m2sin2A−n2tan2A=1
⇒m2sin2A−n2cos2Asin2A=1
⇒m2−n2cos2A=sin2A
⇒m2−n2cos2A=1−cos2A
⇒m2−1=cos2A+n2cos2A
⇒m2−1=(n2−1)cos2A
⇒cos2A=m2−1n2−1
Question 15
If sec A =x+14x, , then prove that sec A + tan A = 2x or 12x
Sol :
secA=x+14x
To prove that sec A + tan A = 2x or 12x
tanA=±√sec2A−1
=±√(x+14x)2−1
=±√x2+116x2+12−1
=±√x2+116x2−12
=±(x−14x)
∴secA+tanA=x+14x+x−14x=2x
or x+14x−x+14x=12x
Hence proved
Question 16
When 0° < θ < 90°, solve the following equations:
2(1−sin2θ)+sinθ−2=0
2−2sin2θ+sinθ−2=0
−2sin2θ+sinθ=0
⇒sinθ(−2sinθ+1)=0
Either sinθ=0, then θ=0
or −2sinθ+1=0, then sinθ=12
∴θ=30∘
Hence θ=0∘ or 30∘
(ii) 3cosθ=2sin2θ
⇒3cosθ=2(1−cos2θ)
⇒3cosθ=2−2cos2θ
⇒2cos2θ+3cosθ−2=0
⇒2cos2θ+4cosθ−cosθ−2=0
⇒2cosθ(cosθ+2)−1(cosθ+2)=0
(cosθ+2)(2cosθ−1)=0
Either cosθ+2=0⇒cosθ=−2 which is not possible being negative.
or 2cosθ−1=0,cosθ=12=cos60∘
∴θ=60∘
(iii) sec2θ−2tanθ=0
1+tan2θ−2tanθ=0
⇒tan2θ−2tanθ+1=0
(tanθ−1)2=0⇒tanθ−1=0
⇒tanθ=1=tan45∘
∴θ=45∘
(iv) tan2θ=3(secθ−1)
(sec2θ−1)=3(secθ−1)
⇒sec2θ−1=3secθ−3
⇒sec2θ−1−3secθ+3=0
⇒sec2θ−3secθ+2=0
⇒sec2θ−secθ−2secθ+2=0
⇒secθ(secθ−1)−2(secθ−1)=0
⇒(secθ−1)(secθ−2)=0
Either secθ−1=0,secθ=1=sec0∘
∴θ=0∘ not possible (∵θ>0∘)
or secθ−2=0⇒secθ=2
∴secθ=2=sec60∘
∴θ=60∘
Comments
Post a Comment