ML Aggarwal Solution Class 10 Chapter 18 Trigonometric Identities Test

Test

Question 1

(i) If θ is an acute angle and cosec θ = √5 find the value of cot θ – cos θ.

(ii) If θ is an acute angle and tanθ=815 find the value of sec θ + cosec θ.

Sol :

(i) θ is an acute angle.

cosec θ = √5

sinθ=15

cosθ=1sin2θ

=1(15)2=115

=515=45=25

Now, cotθ-cosθ=cosθsinθcosθ

=251525=2125

=2(115)=2(51)5


(ii) tanθ=815

In the figure,







tanθ=BCAB=815

BC=8,AB=15

AC=AB2+BC2=52+82

=225+64=289=17

secθ=ACAB=1715

cosecθ=ACBC=178

secθ+cosecθ=1715+178

=136+255120=391120=331120


Question 2

Evaluate the following:

(i) 2×(cos220+cos270sin225+sin265)– tan 45° + tan 13° tan 23° tan 30° tan 67° tan 77°

(ii) sec29cosec61+ 2 cot 8° cot 17° cot 45° cot 73°0 cot 82° – 3(sin2 38° + sin2 52°)

(iii) sin222+sin268cos222+cos268+ sin2 63° + cos 63° sin 27°

Sol :

(i) 2×(cos220+cos270sin225+sin265)– tan 45° + tan 13° tan 23° tan 30° tan 67° tan 77°

=2[cos2(9070)+cos270sin225+sin2(9025)]tan45+tan13tan77tan23tan67tan30

=2[sin270+cos270sin225+cos225]1+tan13tan 1+tan13tan

(9013)tan23tan(9023)×13

=2(11)1+tan13cot13tan23cot23×13

=21+1×1×13

=21+13

=1+13=3+13

=(3+1)33×3

=3+33


(ii) sec29cosec61+2cot8cot17cot45cot 

73cot823(sin238+sin252)

=sec29cosec(9029)+2cot8×cot(908)×cot17×cot(9017)cot453[sin238+sin2(9038)]

=sec29sec29+2cot8tan8×cot17tan17×13(sin238+cos238)

=1+2×1×1×13×1=1+23=0


(iii) sin222+sin268cos222+cos268+sin263+cos63sin27

=sin222+sin2(9022)cos222+cos2(9022)+sin263+cos63sin(9063)

=sin222+cos222cos222+sin222+sin263+cos63×cos63

=11+(sin263+cos263)

=1+1=2


Question 3

If 43(sec259cot231)22sin90+3tan256tan234=x2then find the value of x.

Sol :

Given

43(sec259cot231)22sin90+3tan256tan234=x2

43[sec259cot2(9059)]23sin90+3tan256tan2(9056)=x3

=43[sec259tan259]23×1+3tan256cot256=x3

=43×123+3×1=x3

4323+3=x3

42+93=x3

113=x3

x=11×33=11

∴x=11

Prove the following (4 to 11) identities, where the angles involved are acute angles for which the trigonometric ratios are defined:


Question 4

(i) cosA1sinA+cosA1+sinA=2secA

(ii) cosAcosecA+1+cosAcosecA1=2tanA

Sol :

(i) cosA1sinA+cosA1+sinA=2secA

L.H.S=cosA1sinA+cosA1+sinA

=cosA[11sinA+11+sinA]

=cosA[1+sinA+1sinA(1sinA)(1+sinA)]

=cosA[21sin2 A]=2cosAcos2 A

=2cosA=2secA=R.H.S


(ii) cosAcosecA+1+cosAcosecA1=2tanA

L.H.S=cosAcosecA+1+cosAcosecA1

=cosA[1cosecA+1+1cosecA1]

=cosA[cosecA1+cosecA+1(cosecA+1)(cosecA1)]

=cosA[2cosecA]cosec2A1=2cosAsinA(cot2A)

=2cotAcot2A=2cotA

=2 tan A= R.H.S


Question 5

(i) (cosθsinθ)(1+tanθ)2cos2θ1=secθ

(ii) (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ) = 1.

Sol :
(i) (cosθsinθ)(1+tanθ)2cos2θ1=secθ
L.H.S =(cosθsinθ)(1+tanθ)2cos2θ1

=(cosθsinθ)(cosθ+sinθ)cosθ(2cos2θ1)

=cos2θsin2θcosθ(2cos2θ1)

=cos2θ(1cos2θ)cosθ(2cos2θ1)

=cos2θ1+cos2θcosθ(2cos2θ1)

=2cos2θ1cosθ(2cos2θ1)

=1cosθ=secθ=R.H.S


(ii) (cosecθsinθ)(secθcosθ)(tanθ+cotθ)=1

(cosecθsinθ)(secθcosθ)(tanθ+cotθ)=1

L.H.S. =(cosecθsinθ)(secθcosθ)(tanθ+cotθ)

=(1sinθsinθ)(1cosθcosθ)(sinθcosθ+cosθsinθ)

=(1sin2θsinθ)(1cos2θcosθ)(sin2θ+cos2θsinθcosθ)

=(cos2θ×sin2θ)sinθcosθ×1sinθcosθ

=sin2cos2θsin2θcos2θ=1=R.H.S


Question 6

(ii) sin2θ+cos4θ=cos2θ+sin4θ

(ii) cotθcosecθ+1+cosecθ+1cotθ=2secθ

Sol :

L.H.S=sin2θ+cos4θ

=(1cos2θ+cos4θ

=1cos2θ+cos4θ

=1cos2θ(1cos2θ)


R.H.S=cos2θ+sin4θ

=1sin2θ+sin4θ

=1sin2θ(1sin2θ)

=1sin2θcos2θ

∴L.H.S=R.H.S

(ii) cotθcosecθ+1+cosecθ+1cotθ=2secθ

L.H.S=cotθcosecθ+1+cosecθ+1cotθ

=cosθsinθ1sinθ+1+1sinθ+1cosθsinθ

=cosθsinθ1+sinθsinθ+1+sinθsinθcosθsinθ

=cosθsinθ×sinθ1+sinθ+1+sinθsinθ×sinθcosθ

=cosθ1+sinθ+1+sinθcosθ

=cos2θ+1+sin2θ+2sinθ(1+sinθ)cosθ

=1+1+2sinθ(1+sinθ)cosθ=2+2sinθ(1+sinθ)cosθ

=2(1+sinθ)cosθ(1+sinθ)=2cosθ

=2 sec θ=R.H.S


Question 7

(i) sec4A(1sin4A)2tan2A=1

(ii) 1sinA+cosA+1+1sinA+cosA1=secA+cosecA

Sol :

(i) sec4 A(1sin4 A)2tan2 A=1

L.H.S=sec4A(1sin4A)2tan2A

=1cos4A(1+sin2A)(1sin2A)2tan2A

[a2b2=(a+b)(ab)]

=(1+sin2A)cos2Acos4A2sin2Acos2A

=1+sin2Acos2A2sin2Acos2A

=1+sin2A2sin2Acos2A

=1sin2Acos2A

=cos2Acos2A=1

(1sin2A=cos2A)

=R.H.S


(ii) 1sinA+cosA+1+1sinA+cosA1

=sec A+cosec A

L.H.S=1sinA+cosA+1+1sinA+cosA1

=sinA+cosA1+sinA+cosA+1(sinA+cosA+1)(sinA+cosA1)

=2(sinA+cosA)(sinA+cosA)2(1)2

=2(sinA+cosA)sin2A+cos2A+2sinAcosA1

=2(sinA+cosA)1+2sinAcosA1

=2(sinA+cosA)2sinAcosA

=sinA+cosAsinAcosA

=sinAsinAcosA+cosAsinAcosA

=1cosA+1sinA

=sec A+cosec A=R.H.S


Question 8

(i) sin3θ+cos3θsinθcosθ+sinθcosθ=1

(ii) (secAtanA)2(1+sinA)=1sinA

Sol :

(i) sin3θ+cos3θsinθcosθ+sinθcosθ=1

L.H.S=sin3θ+cos3θsinθcosθ+sinθcosθ

=(sinθ+cosθ)(sin2θsinθcosθ+cos2θ)(sinθ+cosθ)+sinθcosθ

=sin2θ+cos2θsinθcosθ+sinθcosθ

=1=R.H.S


(ii) (secAtanA)2(1+sinA)=1sinA

L.H.S=(1cosAsinAcosA)2(1+sinA)

=(1sinAcosA)2(1+sinA)

=(1sinA)2cos2A(1+sinA)

=(1sinA)2(1+sinA)1sin2 A

=(1sinA)2(1+sinA)(1sinA)(1+sinA)

=1-sin A=R.H.S


Question 9

(i) cosA1tanAsin2AcosAsinA=sinA+cosA

(ii) (sec A – cosec A) (1 + tan A + cot A) = tan A sec A – cot A cosec A

(iii) tan2θtan2θ1cosec2θsec2θcosec2θ=1sin2θcos2θ
Sol :

(i) cosA1tanAsin2AcosAsinA=sinA+cosA

L.H.S=cosA1tanAsin2AcosAsinA

=cosA1sinAcosAsin2AcosAsinA

=cosA×cosAcosAsinAsin2AcosAsinA

=cos2AcosAsinAsin2AcosAsinA

=cos2Asin2AcosAsinA

=(cosA+sinA)(cosAsinA)(cosAsinA)

=cos A+sin A

=sin A+cos A=R.H.S


(ii) (secAcosecA)(1+tanA+cotA)=tanAsecAcotAcosecA

L.H.S=(secA-cosecA)(1+tanA+cotA)

=(1cosA1sinA)(1+sinAcosA+cosAsinA)

=sinAcosAsinAcosA×sinAcosA+sin2A+cos2AsinAcosA

=sinAcosAsinAcosA×sinAcosA+1sinAcosA

=(sinAcosA)(sinAcosA+1)sin2Acos2A

=sinAcosA1cosAcosAsinA1sinA

=sinAcos2AcosAsin2A

=sin3Acos3Asin2Acos2A

=(sinAcosA)(sin2A+cos2A+sinAcosA)sin2Acos2A

=(sinAcosA)(1+sinAcosA)sin2 Acos2 A

=(sinAcosA)(sinAcosA+1)sin2 Acos2 A

∴L.H.S=R.H.S


(iii) tan2θtan2θ1+cosec2θsec2θcosec2θ=1sin2θcos2θ

L.H.S=tan2θtan2θ1+cosec2θsec2θcosec2θ

=sin2θcos2θsin2θcos2θ1+1sin2θ1cos2θ1sin2θ

=sin2θcos2θ×cos2θsin2θcos2θ+1sin2θsin2θcos2θsin2θcos2θ

=sin2θsin2θcos2θ+sin2θcos2θsin2θ(sin2θcos2θ)

=sin2θsin2θcos2θ+cos2θsin2θcos2θ

=sin2θ+cos2θsin2θcos2θ=1sin2θcos2θ

=R.H.S


Question 10

sinA+cosAsinAcosA+sinAcosAsinA+cosA=2sin2Acos2A=212cos2A=2sec2Atan2A1

Sol :

sinA+cosAsinAcosA+sinAcosAsinA+cosA=2sin2Acos2A=212cos2A=2sec2Atan2A1

L.H.S=sinA+cosAsinAcosA+sinAcosAsinA+cosA

=(sinA+cosA)2+(sinAcosA)2sin2 Acos2 A

=2(sin2A+cos2A)sin2Acos2A

=2×1sin2Acos2A=2sin2Acos2A

=R.H.S

Now, we have

=2sin2Acos2A

=2sin2A(1sin2A)

=2sin2A1+sin2A

=2sin2Acos2A

=2cos2Asin2Acos2Acos2Acos2A

=2sec2Atan2A1


Question 11

2(sin6θ+cos6θ)3(sin4θ+cos4θ)+1=θ

Sol :

2(sin6θ+cos6θ)3(sin4θ+cos4θ)+1=θ

L.H.S==2(sin6θ+cos6θ)3(sin4θ+cos4θ)+1

=2[(sin2θ)3+(cos2θ)3]3[sin4θ+cos4θ]+1

=2[(sin2θ+cos2θ)(sin4θ+cos4θsin2θcos2θ)]3[sin4θ+cos4θ]+1

=2(sin4θ+cos4θsin2θcos2θ)3(sin4θ+cos4θ)+1

=2sin2θcos2θsin4θcos4θ+1

=1[sin4θ+cos4θ+2sin2θcos2θ]

=1(sin2θ+cos2θ)2=11=0

=R.H.S


Question 12

If cot θ + cos θ = m, cot θ – cos θ = n, then prove that (m2n2)2= 16 run.

Sol :
cot θ + cos θ = m…..(i)
cot θ – cos θ = n……(ii)
Adding (i)&(ii) we get
2cotθ=m+n
cotθ=m+n2

tanθ=2m+n...(i)

Subtracting (ii) from (i)

2cosθ=mncosθ=mn2

secθ=2mn...(ii)

Squaring and subtracting

sec2θtan2θ=(2mn)2(2m+n)2

1=4(mn)24(m+n)2

4[1(mn)21(m+n)2]=1

4[(m+n)2(mn)2(m+n)2(mn)2]=1

4(4mn)(m2n2)2=1

16mn(m2n2)2=1

(m2n2)2=16mn


Question 13

If sec θ + tan θ = p, prove that sin θ = p21p2+1

Sol :

sec θ + tan θ = p,

prove that sin θ =p21p2+1

1cosθ+sinθcosθ=p

1+sinθcosθ=p

Squaring ,

(1+sinθ)2cos2θ=p2

(1+sinθ)21sin2θ=p2

(1+sinθ)2(1sinθ)(1+sinθ)=p2

1+sinθ1sinθ=p21

Applying componendo and dividendo

1+sinθ+1sinθ1+sinθ1+sinθ=p2+1p21

1+sinθ+1sinθ1+sinθ1+sinθ

=p2+1p21

sinθ=p21p2+1


Question 14

If tan A = n tan B and sin A = m sin B, prove that cos2A=m21n21

Sol :

m=sinAsinB

n=tanAtanB

1sinB=msinA

cosecB=msinA

1tanB=ntanA

cotB=ntanA

Now, cosec2Bcot2B=1

m2sin2An2tan2A=1

m2sin2An2cos2Asin2A=1

m2n2cos2A=sin2A

m2n2cos2A=1cos2A

m21=cos2A+n2cos2A

m21=(n21)cos2A

cos2A=m21n21


Question 15

If sec A  =x+14x, , then prove that sec A + tan A = 2x or 12x

Sol :

secA=x+14x

To prove that sec A + tan A = 2x or 12x

tanA=±sec2A1

=±(x+14x)21

=±x2+116x2+121

=±x2+116x212

=±(x14x)

secA+tanA=x+14x+x14x=2x

or x+14xx+14x=12x

Hence proved


Question 16

When 0° < θ < 90°, solve the following equations:

(i) 2cos2θ+sinθ2=0
(ii) 3cosθ=2sin2θ
(iii) sec2θ2tanθ=0
(iv) tan2θ=3(secθ1)
Sol :
0° < θ < 90°
(i) 2cos2θ+sinθ2=0

2(1sin2θ)+sinθ2=0

22sin2θ+sinθ2=0

2sin2θ+sinθ=0

sinθ(2sinθ+1)=0

Either sinθ=0, then θ=0

or 2sinθ+1=0, then sinθ=12

θ=30

Hence θ=0 or 30


(ii) 3cosθ=2sin2θ

3cosθ=2(1cos2θ)

3cosθ=22cos2θ

2cos2θ+3cosθ2=0

2cos2θ+4cosθcosθ2=0

2cosθ(cosθ+2)1(cosθ+2)=0

(cosθ+2)(2cosθ1)=0

Either cosθ+2=0cosθ=2 which is not possible being negative.

or 2cosθ1=0,cosθ=12=cos60

θ=60


(iii) sec2θ2tanθ=0

1+tan2θ2tanθ=0

tan2θ2tanθ+1=0

(tanθ1)2=0tanθ1=0

tanθ=1=tan45

θ=45


(iv) tan2θ=3(secθ1)

(sec2θ1)=3(secθ1)

sec2θ1=3secθ3

sec2θ13secθ+3=0

sec2θ3secθ+2=0

sec2θsecθ2secθ+2=0

secθ(secθ1)2(secθ1)=0

(secθ1)(secθ2)=0

Either secθ1=0,secθ=1=sec0

θ=0 not possible (θ>0)

or secθ2=0secθ=2


secθ=2=sec60

θ=60

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2