ML Aggarwal Solution Class 10 Chapter 19 Trigonometric Tables Test
Test
Question 1
Using trigonometrical tables, find the values of :
(i) sin 48° 52′
(ii) cos 37° 34′
(iii) tan 18° 21′.
Sol :
Using tables, we find that
(i) sin 48° 52′ = .7524 + .0008 = .7532
(ii) cos 37° 34′ = .7934 – .0007 = .7927
(iii) tan 18° 21′ = .3307 + .0010 = .3317.
Question 2
Use tables to find the acute angle θ, given that
(i) sin θ = 0.5766
(ii) cos θ = 0.2495
(iii) tan θ = 2.4523.
Sol :
Using table, we find that
(i) sin θ = 0.5766 = 0.5764 + 0.0002
= sin (35° 12’+ 1′)
= sin 35° 13′
θ = 35° 13′
(ii) cos θ = 0.2495 = 0.2487 + 0.0008
= cos (75° 36′ – 3′)
= cos 75° 33′
θ = 75° 33′
(iii) tan θ = 2.4523 = 2.4504 + 0.0019
= tan (67° 48′ + 1′)
= tan 67° 49′
Question 3
If θ is acute and cos θ = 0.53, find the value of tan θ.
Sol :
From the table, we find that
cos θ = 0.53 = .5299 + .0001 = cos 58°
θ = 58°
and tan 58° = 1.6003
Question 4
Find the value of: sin 22° 11′ + cos 57° 20′ – 2 tan 9° 9′.
Sol :
Using the tables, we find that
sin 22° 11′ = 0.3762 + 0.0014 = 0.3776
cos 57° 20′ = 0.5402 – 0.0005 = 0.5397
tan 9° 9′ = 0.1602 + 0.0009 = 0.1611
∴ sin 22° 11′ + cos 57° 20′ – 2 tan 9° 9′
= 0.3376 + 0.5397 – 0.1611 × 2
= 0.3776 + 0.5397 – 0.3222
= 0.9173 – 0.3222
= .5951.
Question 5
If θ is acute and sin θ = 0.7547, find the value of: (i) θ (ii) cos θ (iii) 2 cos θ – 3 tan θ.
Sol :
Using the tables, we find that
(i) sin θ = 0.7547 = sin 49°
θ = 49°.
(ii) cos θ = cos 49° = 0.6561.
(iii) tan θ = tan 49° = 1.1504
2 cos θ – 3 tan θ
= 2 × θ.6561 – 3 × 1.1504
= 1.3122 – 3.4512
= – 2.1390
Comments
Post a Comment