ML Aggarwal Solution Class 10 Chapter 20 Heights and Distances Test
Test
Question 1
The angle of elevation of the top of a tower from a point A (on the ground) is 30°. On walking 50 m towards the tower, the angle of elevation is found to be 60°. Calculate
(i) the height of the tower (correct to one decimal place).
(ii) the distance of the tower from A.
Sol :
Let TR be the tower and A is a point on the ground
and angle of elevation of the top of tower = 30°
AB = 50 m
and from B, the angle of elevation is 60°
Let TR = h and AR = x
BR = x – 50
$\tan \theta=\frac{\mathrm{TR}}{\mathrm{AR}} $
$ \Rightarrow \tan 30^{\circ}=\frac{h}{x}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x} $
$ \Rightarrow \quad x=\sqrt{3} h$...(i)
and in right ΔBTR
$\tan 60^{\circ}=\frac{\mathrm{TR}}{\mathrm{BR}}=\frac{h}{x-50}$
$ \Rightarrow \sqrt{3}=\frac{h}{x-50}$
$\Rightarrow h=\sqrt{3}(x-50)$...(ii)
From (i) and (ii)
$h=\sqrt{3}(\sqrt{3} h-50) \Rightarrow h=3 h-50 \sqrt{3}$
$2 h=50 \sqrt{3} \Rightarrow h=25 \sqrt{3}$
h=25(1.732)=43.3
Substituting the value of h in (i)
$x=\sqrt{3} \times 25 \sqrt{3}=25 \times 3=75$
∴Height of tower=43.3 m
and distance of A from the foot of the tower=75 m
Question 2
An aeroplane 3000 m high passes vertically above another aeroplane at an instant when the angles of elevation of the two aeroplanes from the same point on the ground are 60° and 45° respectively. Find the vertical distance between the two planes.
Sol :
Let A and B are two aeroplanes
and P is a point on the ground such that
angles of elevations from A and B are 60° and 45° respectively.
AC = 3000 m
Let AB = x
∴ BC = 3000 – x
Let PC = y
$\Rightarrow y=3000-x$
$\Rightarrow \frac{3000}{\sqrt{3}}=3000-x$
$\Rightarrow x=3000-\frac{3000}{\sqrt{3}} $ [from (i)]
$\Rightarrow 3000-\frac{3000 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$
3000-1000(1.732)=3000-1732=1268
∴Distance between the two planes=1268 m
Question 3
A 7m long flagstaff is fixed on the top of a tower. From a point on the ground, the angles of elevation of the top and bottom of the flagstaff are 45° and 36° respectively. Find the height of the tower correct to one place of demical.
Sol :
Let TR be the tower and PT is the flag on it such that PT = 7m
Let TR = h and AR = x
Angles of elevation from P and T are 45° and 36° respectively.
Now in right ∆PAR
$\Rightarrow 1=\frac{7+h}{x}$
$\Rightarrow \quad x=7+h$...(i)
Again in right ΔTAR
$\tan 36^{\circ}=\frac{\mathrm{TR}}{\mathrm{AR}}=\frac{h}{x}$
$\Rightarrow 0 \cdot 7265=\frac{h}{x}$
$\Rightarrow h=x(0 \cdot 7265)$...(ii)
From (i) and (ii)
h=(7+h)(0.7265)
$\Rightarrow h=7 \times 0 \cdot 7265+\cdot 7265 h$
$\Rightarrow h-\cdot 7265 h=7 \times 0 \cdot 7265$
$\Rightarrow (1-\cdot 7265) h=7 \times 0 \cdot 7265$
$\Rightarrow 0 \cdot 2735 h=7 \times 0.7265$
$\dot{h}=\frac{7 \times 0.7265}{2735}=\frac{7 \times 7265}{2735}$
$\dot{h}=\frac{7 \times 0.7265}{.2735}=\frac{7 \times 7265}{2735}$
=18.59
∴Height of tower=18.59=18.6 m
Question 4
A boy 1.6 m tall is 20 m away from a tower and observes that the angle of elevation of the top of the tower is 60°. Find the height of the tower.
Sol :
Let AB be the boy and TR be the tower
∴ AB = 1.6 m
Let TR = h
from A, show AE || BR
∴ ER = AB = 1.6 m
TE = h – 1.6
AE = BR = 20 m
$\tan \theta=\frac{\mathrm{TE}}{\mathrm{AE}}$
$ \Rightarrow \tan 60^{\circ}=\frac{h-1 \cdot 6}{20}$
$\Rightarrow \quad \sqrt{3}=\frac{h-1 \cdot 6}{20}$
$ \Rightarrow h-1 \cdot 6=20 \sqrt{3}$
$h=20 \sqrt{3}+1 \cdot 6=20(1 \cdot 732)+1 \cdot 6$
h=34.640+1.6
=34.64+1.60
h = 36.24
∴ Height of tower = 36.24 m
Question 5
A boy 1.54 m tall can just see the sun over a wall 3.64 m high which is 2.1 m away from him. Find the angle of elevation of the sun.
Sol :
Let AB be the boy and CD be the wall which is at a distance of 2.1 m
Then AB=1.54 m, CD=3.64 m
BD=2.1 m
Draw AE||BD, then
ED=1.54 m
CE=3.64-1.54=2.1 m
and AE=BD=2.1 m
Now in right ΔCAE
$\tan \theta=\frac{C E}{A E}=\frac{2 \cdot 1}{2 \cdot 1}=\frac{21}{21}=1$
$\therefore \theta=45^{\circ} \quad\left(\because \tan 45^{\circ}=1\right)$
$\therefore$ Angle of elevation of the sun $=45^{\circ}$
Question 6
In the adjoining figure, the angle of elevation of the top P of a vertical tower from a point X is 60° ; at a point Y, 40 m vertically above X, the angle of elevation is 45°. Find
(i) the height of the tower PQ
(ii) the distance XQ
(Give your answer to the nearest metre)
$\Rightarrow y=\frac{h}{\sqrt{3}}$...(i)
Again in right ΔPYR
$\tan 45^{\circ}=\frac{\mathrm{PR}}{\mathrm{YR}}=\frac{h-40}{y} \Rightarrow 1=\frac{h-40}{y}$
$\Rightarrow y=h-40$...(ii)
From (i) and (ii)
$h-40=\frac{h}{\sqrt{3}}$
$ \Rightarrow \sqrt{3} h-40 \sqrt{3}=h$
$\Rightarrow \sqrt{3} h-h=40 \sqrt{3}$
$\Rightarrow(1 \cdot 732-1) h$
=40(1.732)
$\Rightarrow \cdot 732 h=69 \cdot 280$
$h=\frac{69 \cdot 280}{.732}=\frac{69280}{732}=94.64$
$\therefore$ Height of the tower $=94 \cdot 64 \mathrm{~m}=95 \mathrm{~m}$
and distance $X Q=h-y=95-40$
from (ii)
=55 m
Question 7
An aeroplane is flying horizontally 1 km above the ground is observed at an elevation of 60°. After 10 seconds, its elevation is observed to be 30°. Find the speed of the aeroplane in km/hr.
Sol :
A and D are the two positions of the aeroplane ;
AB is the height and P is the point
∴ AB = 1 km,
Let AD = x and PB = y
and angles of elevation from A and D at point P are 60° and 30° respectively.
$\Rightarrow \sqrt{3}=\frac{1}{y} $
$ \Rightarrow \quad y=\frac{1}{\sqrt{3}}$..(i)
Again in right ΔDPC
$\tan 30^{\circ}=\frac{\mathrm{DC}}{\mathrm{PC}}=\frac{1}{x+y} $
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{1}{x+y}$
$\Rightarrow x+y=\sqrt{3}$..(ii)
From (i) and (ii)
$x+\frac{1}{\sqrt{3}}=\sqrt{3}$
$\Rightarrow x=\sqrt{3}-\frac{1}{\sqrt{3}}=\frac{3-1}{\sqrt{3}}=\frac{2}{\sqrt{3}}$
$\Rightarrow x=\frac{2 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{2(1 \cdot 732)}{3}=\frac{3 \cdot 464}{3} \mathrm{~km}$
Thus this distance covered in 10 seconds
∴Speed of aeroplane (in km/hr)
$=\frac{3 \cdot 464}{3} \times \frac{60 \times 60}{10}$
$=\frac{3464}{3 \times 1000} \times \frac{3600}{10}$
$=\frac{3464 \times 36}{300}$
$=\frac{3464 \times 12}{100}$
$=\frac{41568}{100}$
=415.68 km/hr
Question 8
A man on the deck of a ship is 16 m above the water level. He observes that the angle of elevation of the top of a cliff is 45° and the angle of depression of the base is 30°. Calculate the distance of the cliff from the ship and the height of the cliff.
Sol :
Let A is the man on the deck of a ship B and CE is the cliff.
AB = 16 m and angle of elevation from the top of the cliff in 45°
and the angle of depression at the base of the cliff is 30°.
Let CE = h, AD = x, then
CD = h – 16, AD = BE = x
Now in right ∆CAD
$\Rightarrow 1=\frac{h-16}{x}$
$ \Rightarrow x=h-16$...(i)
Again in right ΔADE
$\tan 30^{\circ}=\frac{\mathrm{DE}}{\mathrm{AD}}=\frac{16}{x}$
$ \Rightarrow \frac{1}{\sqrt{3}}=\frac{16}{x}$
$\Rightarrow \quad x=16 \sqrt{3}$..(ii)
From (i) and (ii)
$h-16=16 \sqrt{3} \Rightarrow h=16 \sqrt{3}+16$
$\Rightarrow h=16(\sqrt{3}+1)=16(1 \cdot 732+1)$
$=16 \times 2 \cdot 732=43 \cdot 712=43 \cdot 7 \cdot 1 \mathrm{~m}$
and x=h-16=43.71-16=27.71
$\therefore $ Distance of cliff =27.71 m
and height of cliff =43.71 m
Question 9
There is a small island in between a river 100 metres wide. A tall tree stands on the island. P and Q are points directly opposite to each other on the two banks and in the line with the tree. If the angles of elevation of the top of the tree from P and Q are 30° and 45° respectively, find the height of the tree.
Sol :
The width of the river (PQ) = 100 m.
B is the island and AB is the tree on it.
Let AB=h and PC=x, then
BQ=100-x
Now in right ΔAPB
$\tan \theta=\frac{A B}{P B}$
$ \Rightarrow \tan 30^{\circ}=\frac{h}{x}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x}$
$ \Rightarrow \quad x=\sqrt{3} h$...(i)
Again in right ΔABQ
$\tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{BQ}}=\frac{h}{100-x}$
$ \Rightarrow 1=\frac{h}{100-x}$
$\Rightarrow h=100-x$..(i)
From (i) and (ii)
$h=100-\sqrt{3} h \Rightarrow h+\sqrt{3} h=100$
$\Rightarrow(1+1 \cdot 732) h=100 \Rightarrow h=\frac{100}{2 \cdot 732}$
$\therefore h=\frac{100 \times 1000}{2732}=\frac{100000}{2732}=36.6$
$\therefore$ Height of the tree $=36 \cdot 6 \mathrm{~m}$
Question 10
A man standing on the deck of the ship which is 20 m above the sea-level, observes the angle of elevation of a bird as 30° and the angle of depression of its reflection in the sea as 60°. Find the height of the bird
Sol :
Let P is the man standing on the deck of a ship
which is 20 m above the sea level and B is the bird.
Now angle of elevation of the bird from P = 30°
and angle of depression from P to the shadow of the bird in the sea
$\tan 30^{\circ}=\frac{\mathrm{BC}}{\mathrm{PC}} \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x} \Rightarrow x=\sqrt{3} h \mathrm{~m}$...(i)
Similarly in right ΔPCR
$\tan 60^{\circ}=\frac{\mathrm{CR}}{\mathrm{PC}}$
$ \Rightarrow \sqrt{3}=\frac{h+40}{x}$
$\frac{h+40}{\sqrt{3} h}=\sqrt{3}$ [from (i)]
$h+40=\sqrt{3} \times \sqrt{3} h=3 h$
3h-h=40
$ \Rightarrow 2 h=40 $
$\Rightarrow h=\frac{40}{2}=20$
From sea level height of the brid
=20m+h
=20+20=40 m
Comments
Post a Comment