ML Aggarwal Solution Class 10 Chapter 21 Measures of Central Tendency Exercise 21.1
Exercise 21.1
Question 1
(a) Calculate the arithmetic mean of 5.7, 6.6, 7.2, 9.3, 6.2.
(b) The weights (in kg) of 8 new born babies are 3, 3.2, 3.4, 3.5, 4, 3.6, 4.1, 3.2. Find the mean weight of the babies.
Solution:
(a) Sum of 5 observations = 5.7 + 6.6 + 7.2 + 9.3 + 6.2 = 35.0
(b) Weights of 8 babies (in kg) are 3, 3.2, 3.4, 3.5, 4, 3.6, 4.1, 3.2
∴ Total weights of 8 babies
= 3 + 3.2 + 3.4 + 3.5 + 4 + 3.6 + 4.1 + 3.2 = 28.0 kg
Mean weight $=\frac{\sum x_{i}}{n}$
$=\frac{28.0}{8}$ (Here n=8)
= 3.5 kg
New sum=207+60=267
$\therefore \quad$ New mean $=\frac{267}{15}=17 \cdot 8$
(iii) By deducting 2 marks from each students.then total deduction $=15 \times 2=30$
New sum $=207-30=177$
New mean $=\frac{New mean $=\frac{177}{15}=11 \cdot 8$177}{15}=11 \cdot 8$
(iv) The marks being doubled of each student then the new sum
$=207 \times 2=414$
$\therefore$ New mean $=\frac{414}{15}=27 \cdot 6$
Question 2
The marks obtained by 15 students in a class test are 12, 14, 07, 09, 23, 11, 08, 13, 11, 19, 16, 24, 17, 03, 20 find
(i) the mean of their marks.
(ii) the mean of their marks when the marks of each student are increased by 4.
(iii) the mean of their marks when 2 marks are deducted from the marks of each student.
(iv) the mean of their marks when the marks of each student are doubled.
Sol :
Sum of marks of 15 students.
= 12 + 14 + 07 + 09 + 23 + 11 + 08 + 13 + 11 + 19 + 16 + 24 + 17 + 03 + 20
= 207
= 13.8
Question 3
(a) The mean of the numbers 6, y, 7, x, 14 is 8. Express y in terms of x.
(b) The mean of 9 variates is 11. If eight of them are 7, 12, 9, 14, 21, 3, 8 and 15 find the 9th variate.
Sol :
(a) Sum of numbers = 6 + y + 7 + x + 14
= 27 + x + y …(i)
But mean of 5 numbers = 8
∴ Sum = 8 × 5 = 40 …(ii)
From (i) and (ii)
27 + x + y = 40
⇒ x + y = 40 – 27 = 13
∴ y = 13 – x
(b) Mean of 9 variates = 11
∴ Total sum =11 × 9 = 99
But sum of 8 of these variates
= 7 + 12 + 9 + 14 + 21 + 3 + 8 + 15 = 89
∴ 9th variate = 99 – 89 = 10
Question 4
(a) The mean age of 33 students of a class is 13 years. If one girl leaves the class, the mean becomes $12\frac{15}{16}$ years. What is the age of the girl ?
(b) In a class test, the mean of marks scored by a class of 40 students was calculated as 18.2. Later on, it was detected that marks of one student was wrongly copied as 21 instead of 29. Find the correct mean.
Sol :
(a) Mean age of 33 students = 13 years
Total age = 13 × 33 = 429 years
After leaving one girl, the mean of 32
$\therefore$ Total age of 32 students $=\frac{207}{16} \times 32$
=414 years
Hence , the age of the girls=429-414
=15 years
(b) Mean of marks obtained by 40 students
=18.2
$\therefore$ Total marks obtained by than $=18.2 \times 40$
=728
Difference of marks copited wrongly =29-21
=8
$\therefore$ Actual total marks $=728+8=736$
New mean $=\frac{736}{40}=18.4$
Question 5
Find the mean of 25 given numbers when the mean of 10 of them is 13 and the mean of the remaining numbers is 18.
Sol :
Mean of 10 numbers = 13
Sum = 13 × 10 = 130
and mean of remaining 15 numbers = 18
Sum = 18 × 15 = 270
Total sum of 25 numbers = 130 + 270 = 400
Question 6
Number | 5 | 10 | 15 | 20 | 25 | 30 | 35 |
Frequency | 1 | 2 | 5 | 6 | 3 | 2 | 1 |
x | f | fx |
---|---|---|
5 | 1 | 5 |
10 | 2 | 20 |
15 | 5 | 75 |
20 | 6 | 120 |
25 | 3 | 75 |
30 | 2 | 60 |
35 | 1 | 35 |
Total | 20 | 390 |
Question 7
No. of matches | 35 | 36 | 37 | 38 | 39 | 40 | 41 |
No. of boxes | 6 | 10 | 18 | 25 | 21 | 12 | 8 |
No. of match (x) |
No. of boxes ( f ) |
fx |
---|---|---|
35 | 6 | 210 |
36 | 10 | 360 |
37 | 18 | 666 |
38 | 25 | 950 |
39 | 21 | 819 |
40 | 12 | 480 |
41 | 8 | 328 |
Total | 100 | 3813 |
Question 8
Pocket money (in Rs) | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
No. of students | 2 | 6 | 13 | 22 | 24 | 10 | 3 |
Pocket money (x) |
No. of students ( f ) |
fx |
---|---|---|
60 | 2 | 120 |
70 | 6 | 420 |
80 | 13 | 1040 |
90 | 22 | 1980 |
100 | 24 | 2400 |
110 | 10 | 1100 |
120 | 3 | 360 |
Total | 80 | 7420 |
Question 9
No. of heads | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
No. of tosses | 20 | 25 | 160 | 283 | 338 | 140 | 34 |
Pocket money (x) |
No. of students ( f ) |
fx |
---|---|---|
6 | 20 | 120 |
5 | 25 | 125 |
4 | 160 | 640 |
3 | 283 | 849 |
2 | 338 | 676 |
1 | 140 | 140 |
0 | 34 |
0 |
Total | 1000 | 2550 |
Question 10
Numbers | 60 | 61 | 62 | 63 | 64 | 65 | 66 |
Cumulative frequency | 8 | 18 | 33 | 40 | 49 | 55 | 60 |
Pocket money (x) |
Cumulative frequency ( c.f ) |
frequency (f) |
fx |
---|---|---|---|
60 | 8 | 8 | 480 |
61 | 18 | 10 | 610 |
62 | 33 | 15 | 930 |
63 | 40 | 7 | 441 |
64 | 49 | 9 | 576 |
65 | 55 | 6 | 390 |
66 | 60 |
5 | 330 |
Total | 60 | 3757 |
Question 11
Category | A | B | C | D | E | F | G |
Wages (in rupees) per day | 50 | 60 | 70 | 80 | 90 | 100 | 110 |
No. of workers | 2 | 4 | 8 | 12 | 10 | 6 | 8 |
Category | Wages (in Rs) x |
No. of workers (f) |
fx |
---|---|---|---|
A | 50 | 2 | 100 |
B | 60 | 4 | 240 |
C | 70 | 8 | 560 |
D | 80 | 12 | 960 |
E | 90 | 10 | 900 |
F | 100 | 6 | 600 |
G | 110 |
8 | 880 |
Total | 50 | 4240 |
Question 12
Variate | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Frequency | 20 | 17 | f | 10 | 8 | 6 | 7 | 6 |
Variate (x) |
Frequency (f) |
fx |
---|---|---|
5 | 20 | 100 |
6 | 17 | 102 |
7 | f | 7f |
8 | 10 | 80 |
9 | 8 | 72 |
10 | 6 | 60 |
11 | 7 | 77 |
12 | 6 | 72 |
Total | ∑f=74+f | 563+7f |
$\because M=\frac{\sum f x}{\sum f}$
$\therefore 7.5=\frac{563+7 f}{74+f} \Rightarrow 555+7.5 f=563+7 f$
$\Rightarrow 0.5 f=8 \Rightarrow f=\frac{8 \times 10}{5} \Rightarrow f=16$
∴Missing frequency (f)=16
Question 13
Find the value of the missing variate for the following distribution whose mean is 10
Variate (xi) | 5 | 7 | 9 | 11 | _ | 15 | 20 |
Frequency (fi) | 4 | 4 | 4 | 7 | 3 | 2 | 1 |
Variate (x) |
Frequency ( f ) |
fx |
---|---|---|
5 | 4 | 20 |
7 | 4 | 28 |
9 | 4 | 36 |
11 | 7 | 77 |
x | 3 | 3x |
15 | 2 | 30 |
20 | 1 |
20 |
Total | 25 | 211+3x |
But mean=10 (given)
$\therefore \frac{211+3 x}{25}=10$
$\Rightarrow \quad 211+3 x=250$
$\Rightarrow 3 x=250-211=39$
$\Rightarrow \dot{x}=\frac{39}{3}=13$
∴Missing variate=13
Question 14
Marks obtained by 40 students in a short assessment are given below, where a and b are two missing data.
Marks | 5 | 6 | 7 | 8 | 9 |
No. of students | 6 | a | 16 | 13 | b |
If the mean of the distribution is 7.2, find a and b.
Marks (x) |
No. of students (f) |
fx |
---|---|---|
5 | 6 | 30 |
6 | a | 6a |
7 | 16 | 112 |
8 | 13 | 104 |
9 | b | 9b |
Total | 35+a+b=40 | 246+6a+9b |
$\Rightarrow$ Also, mean $=\frac{\sum(f x)}{\sum f}$
$\Rightarrow 7.2=\frac{246+6 a+9 b}{40}$
$\Rightarrow 246+6 a+9 b=288$
$\Rightarrow 6 a+9 b=42$
$\Rightarrow 2 a+3 b=14$...(ii)
2a+3(5-a)=14
2a+15-3a=14
a=1
Solving (i) and (ii) , we get a=1, b=4
Question 15
Find the mean of the following distribution
Class Interval | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 10 | 6 | 8 | 12 | 5 |
If the mean of the distribution is
Sol :
Class interval | Class mark (xi) |
Frequency fi |
fixi |
---|---|---|---|
0-10 | 5 | 10 | 50 |
10-20 | 15 | 6 | 90 |
20-30 | 25 | 8 | 200 |
30-40 | 35 | 12 | 420 |
40-50 | 45 | 5 | 225 |
Total | Σfi=41 | Σfixi=985 |
Mean $=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{985}{41}=24.02$ (approx)
Question 16
Calculate the mean of the following distribution:
Class Interval | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Frequency | 8 | 5 | 12 | 35 | 24 | 16 |
Sol :
Consider the following distribution :
Class interval | Class mark (xi) |
Frequency fi |
fixi |
---|---|---|---|
0-10 | 8 | 5 | 40 |
10-20 | 5 | 15 | 75 |
20-30 | 12 | 25 | 300 |
30-40 | 35 | 35 | 1225 |
40-50 | 24 | 45 | 1080 |
40-50 | 24 | 45 | 1080 |
Total | fi=100 | fixi=3600 |
Mean $=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{3600}{100}=36$
Question 17
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
No. of students | 10 | 9 | 25 | 30 | 16 | 10 |
Sol :
Marks | Mid values (xi) |
No. of students (fi) |
di=xi-A | ti$=\frac{d_i}{c}$ | fiti |
---|---|---|---|---|---|
0-10 | 5 | 10 | -20 | -2 | -20 |
10-20 | 15 | 9 | -10 | -1 | -9 |
20-30 | 25 | 25=A | 0 | 0 | 0 |
30-40 | 35 | 30 | 10 | 1 | 30 |
40-50 | 45 | 16 | 20 | 2 | 32 |
50-60 | 55 | 10 | 30 | 3 | 30 |
Total | Σfi=100 | Σfiti=63 |
Question 18
Class interval | 0-50 | 50-100 | 100-150 | 150-200 | 200-250 | 250-300 |
Frequency | 4 | 8 | 16 | 13 | 6 | 3 |
Sol :
Class interval |
Frequency (xi) |
Class Mark |
fx |
---|---|---|---|
0-50 | 4 | 25 | 100 |
50-100 | 8 | 75 | 600 |
100-150 | 16 | 125 | 2000 |
150-200 | 13 | 175 | 2275 |
200-250 | 6 | 225 | 1350 |
250-300 | 3 | 275 | 825 |
Total | 50 | 7150 |
Arithmetic mean $(\bar{x})$
$=\frac{\sum f x}{\sum f}=\frac{7150}{50}=143$
Question 19
Wages in ₹ | 45-50 | 50-55 | 55-60 | 60-65 | 65-70 | 70-75 | 75-80 |
No. of workers | 5 | 8 | 30 | 25 | 14 | 12 | 6 |
Wages in Rs | No. of Workers (f) |
Mid- mark (x) |
d=(x-A) | f×d |
---|---|---|---|---|
45-50 | 5 | 47.5 | -15 | -75 |
50-55 | 8 | 52.5 | -10 | -80 |
55-60 | 30 | 57.5 | -5 | -150 |
60-65 | 25 | 62.5=A | 0 | 0 |
65-70 | 14 | 67.5 | 5 | 70 |
70-75 | 12 | 72.5 | 10 | 120 |
75-80 | 6 | 77.5 | 15 | 90 |
Total | Σf=100 | Σfd=-25 |
Question 20
Marks | 11-20 | 21-30 | 31-40 | 41-50 | 51-60 | 61-70 | 71-80 |
No. of students | 2 | 6 | 10 | 12 | 9 | 7 | 4 |
Marks | Frequency (f) |
Mid-value (x) |
di=xi-A A=45.5 |
ui$=\frac{x_i-A}{10}$ | f×ui |
---|---|---|---|---|---|
11-20 | 2 | 15.5 | -30 | -3 | -6 |
21-30 | 6 | 25.5 | -20 | -2 | -12 |
31-40 | 10 | 35.5 | -10 | -1 | -10 |
41-50 | 12 | 45.5 | 0 | 0 | 0 |
61-70 | 7 | 65.5 | 20 | 2 | 14 |
71-80 | 4 | 75.5 | 30 | 3 | 12 |
Total | Σf=50 | Σfui=7 |
Question 21
No. of days | 0-6 | 6-10 | 10-14 | 14-20 | 20-28 | 28-38 | 38-40 |
No. of students | 11 | 10 | 7 | 4 | 4 | 3 | 1 |
No. of days | Mid value (x) |
No. of students (f) |
f×x |
---|---|---|---|
0-6 | 3 | 11 | 33 |
6-10 | 8 | 10 | 80 |
10-14 | 12 | 7 | 84 |
14-20 | 17 | 4 | 68 |
20-28 | 24 | 4 | 96 |
28-38 | 33 | 3 | 99 |
38-40 | 39 | 1 | 39 |
Total | 40 | 499 |
Mean $=\frac{\sum f x}{\sum f}=\frac{499}{40}$
=12.475
Question 22
The mean of the following distribution is 23.4. Find the value of p.
Class interval | 0-8 | 8-16 | 16-24 | 24-32 | 32-40 | 40-48 |
Frequency | 5 | 3 | 10 | P | 4 | 2 |
Sol :
Class interval | Frequency (xi) | Class Mark | fx |
---|---|---|---|
0-8 | 5 | 4 | 20 |
8-16 | 3 | 12 | 36 |
16-24 | 10 | 20 | 200 |
24-32 | p | 28 | 28p |
32-40 | 4 | 36 | 144 |
40-48 | 2 | 44 | 88 |
Total | 24+p | 488+28p |
Mean $=\frac{\sum f x}{\sum f}$
Question 23
Daily pocket allowance (in Rs) | 11-13 | 13-15 | 15-17 | 17-19 | 19-21 | 21-23 | 23-25 |
No. of children | 3 | 6 | 9 | 13 | f | 5 | 4 |
Daily Pocket | Allowance (in Rs) | No. of students (f) | class mark f×x |
---|---|---|---|
11-13 | 3 | 12 | 36 |
13-15 | 6 | 14 | 84 |
15-17 | 9 | 16 | 144 |
17-19 | 13 | 18 | 234 |
19-21 | f | 20 | 20f |
21-23 | 5 | 22 | 110 |
23-25 | 4 | 24 | 96 |
Total | 704+20f |
Hence f=8
Question 24
The mean of the following distribution is 50 and the sum of all the frequencies is 120. Find the values of p and q.
Class Interval | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 |
Frequency | 17 | P | 32 | q | 19 |
Class interval | Class mark (xi) | Frequency fi | fixi |
---|---|---|---|
0-20 | 17 | 10 | 170 |
20-40 | p | 30 | 30p |
40-60 | 32 | 50 | 1600 |
60-80 | q | 70 | 70q |
80-100 | 19 | 90 | 1710 |
Total | 68+p+q | =3480+30p+70q |
Mean $=\frac{\sum f x}{\sum f}$ and
68+p+q=120
Multiplying (i) by 1 and (ii) by 7 and subtracting (i) from (ii)
$\begin{aligned}7p+7q=&364\\3p+7q=&252\\-\phantom{3p}-\phantom{7q}&-\phantom{252} \\ \hline 4p=&112\end{aligned}$
$p=\frac{-112}{-4}=28$
∴q=52-p=52-28=24
Hence p=28, q=24
Question 25
The mean of the following frequency distribution is 57.6 and the sum of all the frequencies is 50. Find the values of p and q.
Class interval | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 |
Frequency | 7 | p | 12 | q | 8 | 5 |
Sol :
Mean = 57.6
and sum of all frequencies = 50
Class | Frequency (f) | Class Mark (x) | fx |
---|---|---|---|
0-20 | 7 | 10 | 70 |
20-40 | p | 30 | 30p |
40-60 | 12 | 50 | 600 |
60-80 | q | 70 | 70q |
80-100 | 8 | 90 | 720 |
100-120 | 5 | 110 | 550 |
Total | 32+p+q=50 | 1940+30p+70p |
32+p+q=50p+q
=50-32
∵p+q=18...(i)
Mean $=\frac{\sum f \times x}{\sum f}$
$\Rightarrow 57.6=\frac{1940+30 p+70 q}{50} $
$ \Rightarrow 2880=1940+30 p+70 q$
$\Rightarrow 30 p+70 q=2880-1940=940$
$\Rightarrow 3 p+7 q=94$...(ii)
Multiplying (i) by 7 and (ii) by 1 and subtracting (ii) from (i)
$\begin{aligned}7p+7q=&126\\3p+7q=&94\\-\phantom{3p}-\phantom{7q}&-\phantom{252} \\ \hline 4p=&32\end{aligned}$
$\therefore p=\frac{32}{4}=8$
∴q=18-p=18-8=10
Hence p=8, q=10
Question 26
The following table gives the life time in days of 100 electricity tubes of a certain make :
Life time in days | No. of tubes |
---|---|
Less than 50 | 8 |
Less than 100 | 23 |
Less than 150 | 55 |
Less than 200 | 81 |
Less than 250 | 93 |
Less than 300 | 100 |
Find the mean life time of electricity tubes.
Sol :
Life time (in days) (class interval) | (c.f) | Frequency (f) | Class marks (x) | u$=\frac{x-A}{h}$ | f×u |
---|---|---|---|---|---|
0-50 | 8 | 8 | 25 | -3 | -24 |
50-100 | 23 | 15 | 75 | -2 | -30 |
100-150 | 55 | 32 | 125 | -1 | -32 |
150-200 | 81 | 26 | 175 | 0 | 0 |
200-250 | 93 | 12 | 225 | 1 | 12 |
250-300 | 100 | 7 | 275 | 2 | 14 |
Total | 100 | -60 |
$=175+50 \times \frac{-60}{100}$
=175-30=145 days
Question 27
Using the information given in the adjoining histogram, calculate the mean correct to one decimal place.
Sol :
From the histogram given, we represent the information in the following table :
Class interval | Frequency (f) | Class mark (x) | f x |
---|---|---|---|
20-30 | 3 | 25 | 75 |
30-40 | 5 | 35 | 175 |
40-50 | 12 | 45 | 540 |
50-60 | 9 | 55 | 495 |
60-70 | 4 | 65 | 260 |
Total | 33 | 1545 |
Mean $\frac{\sum f x}{\sum f}=\frac{1545}{33}$
=46.81 or 46.8
Comments
Post a Comment