ML Aggarwal Solution Class 10 Chapter 21 Measures of Central Tendency Exercise 21.2

 Exercise 21.2

Question 1

A student scored the following marks in 11 questions of a question paper : 3, 4, 7, 2, 5, 6, 1, 8, 2, 5, 7 Find the median marks.

Sol :

Arranging in the ascending order, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 8

Here, n = 11 i.e. odd,

The middle term

$=\frac{n+1}{2}=\frac{11+1}{2}=\frac{12}{2}$

=6 th terms

Media=5


Question 2

(a) Find the median of the following set of numbers : 9, 0, 2, 8, 5, 3, 5, 4, 1, 5, 2, 7 (1990)

(b)For the following set of numbers, find the median: 10, 75, 3, 81, 17, 27, 4, 48, 12, 47, 9, 15.

Sol :

(a) Arranging in ascending order :

0, 1, 2, 2, 3, 4, 5, 5, 5, 7, 8, 9

Here, n = 12 which is even

∴Median $=\frac{1}{2}\left[\frac{n}{2}\right.$ th term $+\left(\frac{n}{2}+1\right)$ th term $]$

$=\frac{1}{2}\left[\frac{12}{2} \mathrm{th}+\left(\frac{12}{2}+1\right) \mathrm{th}\right]$

$=\frac{1}{2}(6 \mathrm{th}+7 \mathrm{th})$

$=\frac{1}{2}(4+5)=\frac{9}{2}=4 \cdot 5$


(b) Arranging the given numbers in ascending order:

3,4,9,10,12,15,17,27,47,48,75,81

Here n=12

∵No. of numbers is even

∴Median =Mean of $\left[\frac{n}{2}\right.$ th $\left.-\left(\frac{n}{2}+1\right) \mathrm{th}\right]$ terms

=Mean of 6th and 7th terms 

$=\frac{15+17}{2}=\frac{32}{2}$

=16


Question 3

Calculate the mean and the median of the numbers : 2, 1, 0, 3, 1, 2, 3, 4, 3, 5

Sol :

Writing in ascending order 0, 1, 1, 2, 2, 3, 3, 3, 4, 5

Here, n = 10 which is even

Mean $=\frac{1}{n}\left(\Sigma x_{i}\right)=\frac{1}{10}$
(0+1+1+2+2+3+3+3+4+5)

$=\frac{1}{10}(24)$

=2.4


Median$=\frac{1}{2}\left[\frac{n}{2}\right.$ th term $+\left(\frac{n}{2}+1\right)$ th term $]$

$=\frac{1}{2}\left[\frac{10}{2}\right.$ th term $+\left(\frac{10}{2}+1\right)$ th term $]$

$=\frac{1}{2}($ 5th term $+$ 6th term $)=\frac{1}{2}(2+3)$

$=\frac{5}{2}=2 \cdot 5$


Question 4

The median of the observations 11, 12, 14, (x – 2), (x + 4), (x + 9), 32, 38, 47 arranged in ascending order is 24. Find the value of x and hence find the mean.

Sol :

Observation are :

11, 12, 14, (x – 2), (x + 4), (x + 9), 32, 38, 47

n = 9

Median$=\frac{9+1}{2}$ th term

i.e, 5th term = x + 4

∴Median=x+4
24=x+4
⇒x=24-4=20

Now observation are:
11, 12, 14, (20-2), (20+4) , (20+9), 32 ,38 ,47
i.e. 11, 12, 14, 18, 24, 29, 32, 38, 47

Mean$=\frac{11+12+14+18+24+29+32+38+47}{9}=\frac{225}{9}$

=25


Question 5

The mean of the numbers 1, 7, 5, 3, 4, 4, is m. The numbers 3, 2, 4, 2, 3, 3, p have mean m – 1 and median q. Find

(i) p

(ii) q

(iii) the mean of p and q.

Sol :

(i) Mean of 1, 7, 5, 3, 4, 4 is m.

Here n = 6

∴$m=\frac{1+7+5+3+4+4}{6}=\frac{24}{6}=4$

Mean of 3,2,4,2,3,3, p is m-1

$\therefore m-1=\frac{3+2+4+2+3+3+p}{7}$

$\Rightarrow 4-1=\frac{17+p}{7} \Rightarrow \frac{17+p}{7}=3$

$\Rightarrow 17+p=21 \Rightarrow p=21-17=4$


(ii) Now median of 3,2,4,2,3,3,4

Writing them in ascending order 2,2,3,3,3,4,4

Here, n=7 which is odd

$\therefore$ Median $=\frac{n+1}{2}$ th term

$=\frac{7+1}{2}=4$ th term $=3$

∴q=3


(iii) Mean of p and q 

$=\frac{1}{2}(4+3)=\frac{1}{2} \times 7=\frac{7}{2}$

=3.5


Question 6

Find the median for the following distribution:

Wages per day (in rupees) 38 45 48 55 62 65
No. of workers 14 8 7 10 6 2

Sol :

Writing the distribution in cumulative frequency table:

Wages per day
(in Rs)
No. of workers
(f)
 c.f.
38 14 14
45 8 22
48 7 29
55 10 39
62 6 45
65 2 47
Here n=47 which is odd

∴Median $=\frac{n+1}{2}$ th term
$\frac{47+1}{2}=24$ th term=48

(∵Here all the observations form 23 to 29 are equal to 48)

∴Median =Rs 48

Question 7

Find the median for the following distribution.

Marks  35 45 50 64 70 72
No. of students 3 5 8 10 5 5

Sol :

Writing the distribution in cumulative frequency table :

MarksNo. of studentsc.f
3533
4558
50816
641026
70531
72536

Here n=36 which is even

∴Median$=\frac{1}{2}\left[\frac{n}{2}\right.$ th tenm $+\left(\frac{n}{2}+1\right)$ th term $]$

$=\frac{1}{2}\left[\frac{36}{2}\right.$ th term $+\left(\frac{36}{2}+1\right)$ th tem $]$

$=\frac{1}{2}(18$ th term +19 th term $)$

$=\frac{1}{2}(64+64)=\frac{1}{2} \times 128=64$

(∵Here all the observation from 17 to 26 all are equal to 64)

∴Median=64


Question 8

Marks obtained by 70 students are given below :

Marks 20705060759040
No. of students8121869512

Calculate the median marks.

Sol :

Arranging the variates in ascending order and in c.f. table.

MarksNo. of studentsc.f
2088
401220
501838
60644
701256
75965
90570
Here n=70 which is even

∴Median $=\frac{1}{2}\left[\frac{n}{2}\right.\text{ th term }+\left(\frac{n}{2}+1\right) \text{ th term ]}$

$=\frac{1}{2}\left[\frac{70}{2}\right.\text{ th term }+\left(\frac{70}{2}+1\right)\text{ th term ]}$

$=\frac{1}{2}(35\text{ th term +36 th term )}$

$=\frac{1}{2}(50+50)=\frac{1}{2} \times 100=50$

(∵Here all the observations from 21 to 38 all are equal to 50)


Question 9

Calculate the mean and the median for the following distribution :

Number5101520253035
Frequency1256321
Sol :

Writing the distribution in c.f. table :

Number
(x)
Frequency
(f)
c.ff x
5115
102320
155875
20614120
2531775
3021960
3512035
Total20390

(i) Mean $=\frac{\sum f x}{\sum f}=\frac{390}{20}=19 \cdot 5$

(ii) Here n=20, which is even

∴Median $=\frac{1}{2}\left[\frac{n}{2}\right.\text{ th term }+\left(\frac{n}{2}+1\right)\text{ th term ]}$

$=\frac{1}{2}\left[\frac{20}{2}\right.\text{ th tem }+\left(\frac{20}{2}+1\right)\text{ th term ]}$

$=\frac{1}{2}$(10 th term +11 th term )

$=\frac{1}{2}(20+20)=\frac{1}{2} \times 40=20$

(∵Here observation from 9 to 14 all are equal to 20)


Question 10

The daily wages (in rupees) of 19 workers are

41, 21, 38, 27, 31, 45, 23, 26, 29, 30, 28, 25, 35, 42, 47, 53, 29, 31, 35.

Find

(i) the median

(ii) lower quartile

(iii) upper quartile range,

(iv) interquartile range.

Sol :

Arranging the observations in ascending order

21, 23, 25, 26, 27, 28, 29, 29, 30, 31, 31, 35, 35, 38, 41, 42, 45, 47, 53

Here n = 19 which is odd.

(i) Median $=\frac{n+1}{2}$ th term 

$=\frac{19+1}{2}=\frac{20}{2}=10$ th term =31

(ii) Lower quartile

$\left(Q_{1}\right)=\frac{n+1}{4}=\frac{19+1}{4}=\frac{20}{4}=5$ th term=27

(iii) Upper quartile 

$\left(\mathrm{Q}_{3}\right)=3\left(\frac{n+1}{4}\right)=3\left(\frac{19+1}{4}\right)=3 \times 5$

=15 th term=41

(iv) Interquartile range

$=Q_{3}-Q_{1}=41-27=14$

(v) Sem- interquartile range


Question 11

From the following frequency distribution, find :

(i) the median

(ii) lower quartile

(iii) upper quartile

(iv) inter quartile range

Variate15182022252730
Frequency4689786
Sol :

Writing frequency distribution in c.f. table :

MarksNo. of studentsc.f
1544
18610
20818
22927
25734
27842
30648
Here n=48 which is even

∴Median $=\frac{1}{2}\left[\frac{n}{2}\right.\text{ th term }+\left(\frac{n}{2}+1\right)\text{ th term ]}$

$=\frac{1}{2}\left[\frac{48}{2}\right.\text{ th term }+\left(\frac{48}{2}+1\right)\text{ th term ]}$

$=\frac{1}{2}$(24th term+25th term)

$=\frac{1}{2}(22+22)=\frac{1}{2} \times 44=22$

(∵Observation from 19 to 27 are all equal to 22)


(ii) Lower quartile 

$\left(\mathrm{Q}_{1}\right)=\frac{n}{4}$ th term $=\frac{48}{4}$

=12th term=20


(iii) Upper quartile 

$\left(Q_{3}\right)=\frac{3 n}{4}$ th term $=\frac{3 \times 48}{4}$

=36th term=27


(iv) Inter quartile range=upper quartile-lower quartile

=27-20=7


Question 12

For the following frequency distribution, find :

(i) the median

(ii) lower quartile

(iii) upper quartile

Variate2531344045485060
Frequency38101510962

Sol :

Writing the distribution in cumulative frequency (c.f.) table :

VariateFrequencyc.f
2533
31811
341021
401536
451046
48955
50661
60263

Here, n=63 which is odd

(i)∴Median$=\frac{63+1}{2}$ th or
$\frac{64}{2}=32$th term=40

∵Observations from 22 to 36 all are equal to 40

(ii) Lower quartile 

$\left(\mathrm{Q}_{1}\right)=\frac{n+1}{4}$ term

$=\frac{63+1}{4}=16$ th term=34


(iii) Upper quartile 

$\left(\mathrm{Q}_{3}\right)=\frac{3 n+1}{4}$

$=\frac{3 \times(63+1)}{4}$ th $=\frac{192}{4}$ th

=48 th term

=48

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2