ML Aggarwal Solution Class 10 Chapter 4 Linear Inequations Test
Test
Question 1
Solve the inequation : 5x – 2 ≤ 3(3 – x) where x ∈ { – 2, – 1, 0, 1, 2, 3, 4}. Also represent its solution on the number line.
Sol :
⇒5x–2<3(3–x)
⇒5x–2≤9–3x
⇒5x+3x≤9+2
Question 2
Solve the inequations :
6x – 5 < 3x + 4, x ∈ I.
Sol :
6x – 5 < 3x + 4
6x – 3x < 4 + 5
⇒ 3x <9
⇒ x < 3
x ∈ I
Solution Set = { -1, -2, 2, 1, 0….. }
Question 3
Find the solution set of the inequation
x + 5 < 2 x + 3 ; x ∈ R
Graph the solution set on the number line.
Sol :
x + 5 ≤ 2x + 3
x – 2x ≤ 3 – 5
⇒ -x ≤ -2
⇒ x ≥ 2
Question 4
If x ∈ R (real numbers) and – 1 < 3 – 2x ≤ 7, find solution set and represent it on a number line.
Sol :
-1 < 3 – 2x ≤ 7
-1 < 3 – 2x and 3 – 2x ≤ 7
⇒ 2x < 3 + 1 and – 2x ≤ 7 – 3
⇒ 2x < 4 and -2x ≤ 4
⇒ x < 2 and -x ≤ 2
and x ≥ -2 or -2 ≤ x
x ∈ R
Solution set -2 ≤ x < 2
Solution set on number line
Question 5
Solve the inequation :
Sol :
$\frac{5 x+1}{7}-4\left(\frac{x}{7}+\frac{2}{5}\right) \leq 1 \frac{3}{5}+\frac{3 x-1}{7}$
$\frac{5 x+1}{7}-4\left(\frac{x}{7}+\frac{2}{5}\right) \leq \frac{8}{5}+\frac{3 x-1}{7}$
Multiplying by L.C.M of 7 and 5 i.e. 35
25x+5-4(5x+14)≤56+15x-5
25x+5-20x-56≤56+15x-5
25x-20x-15x≤56-5-5+56
10x≤102
$-x \leq \frac{102}{10}$
$-x \leq \frac{51}{5}$
$x \geq-\frac{51}{5}$
∵x∈R
∴Solution set$=\left\{x: x \in R, x \geq-\frac{51}{5}\right\}$
Question 6
Find the range of values of a, which satisfy 7 ≤ – 4x + 2 < 12, x ∈ R. Graph these values of a on the real number line.
Sol :
7 < – 4x + 2 < 12
7<– 4x + 2 and – 4x + 2 < 12
4x≤-5 and -4x<10
$x \leq \frac{-5}{4}$ and $-x<\frac{10}{4}$
$x \leq \frac{-5}{4}$ and $-x<\frac{5}{2}$
$x>-\frac{5}{2}$
∵x∈R
∴Solution set$-\frac{5}{2}<x \leq \frac{-5}{4}$
$\left\{x: x \in R,-\frac{5}{2}<x \leq \frac{-5}{4}\right\}$
Solution set on number line
Question 7
If x∈R, solve $2 x-3 \geq x+\frac{1-x}{3}>\frac{2}{5} x$
Sol :
$2 x-3 \geq x+\frac{1-x}{3}>\frac{2}{5} x$
$2 x-3 \geq x+\frac{1-x}{3}$ and $x+\frac{1-x}{3}>\frac{2}{5} x$
$2 x-3 \geq \frac{3 x+1}{3}-x$ and $\frac{3 x+1-x}{3}>\frac{2}{5} x$
6x-9≥3x+1-x and 15x+5-5x>6x
6x-3x+x≥1+9 and 15x-6x-5x>-5
4x≥10 and 4x>-5
$x \geq \frac{10}{4}$ and $x>-\frac{5}{4}$
$x \geq \frac{5}{2}$
∴$x \geq \frac{5}{2}$
∵x∈R
∴Solution set$=\left\{x: x \in R, x \geq \frac{5}{2}\right\}$
Comments
Post a Comment