ML Aggarwal Solution Class 10 Chapter 4 Linear Inequations Test
Test
Question 1
Solve the inequation : 5x – 2 ≤ 3(3 – x) where x ∈ { – 2, – 1, 0, 1, 2, 3, 4}. Also represent its solution on the number line.
Sol :
⇒5x–2<3(3–x)
⇒5x–2≤9–3x
⇒5x+3x≤9+2
Question 2
Solve the inequations :
6x – 5 < 3x + 4, x ∈ I.
Sol :
6x – 5 < 3x + 4
6x – 3x < 4 + 5
⇒ 3x <9
⇒ x < 3
x ∈ I
Solution Set = { -1, -2, 2, 1, 0….. }
Question 3
Find the solution set of the inequation
x + 5 < 2 x + 3 ; x ∈ R
Graph the solution set on the number line.
Sol :
x + 5 ≤ 2x + 3
x – 2x ≤ 3 – 5
⇒ -x ≤ -2
⇒ x ≥ 2
Question 4
If x ∈ R (real numbers) and – 1 < 3 – 2x ≤ 7, find solution set and represent it on a number line.
Sol :
-1 < 3 – 2x ≤ 7
-1 < 3 – 2x and 3 – 2x ≤ 7
⇒ 2x < 3 + 1 and – 2x ≤ 7 – 3
⇒ 2x < 4 and -2x ≤ 4
⇒ x < 2 and -x ≤ 2
and x ≥ -2 or -2 ≤ x
x ∈ R
Solution set -2 ≤ x < 2
Solution set on number line
Question 5
Solve the inequation :
Sol :
5x+17−4(x7+25)≤135+3x−17
5x+17−4(x7+25)≤85+3x−17
Multiplying by L.C.M of 7 and 5 i.e. 35
25x+5-4(5x+14)≤56+15x-5
25x+5-20x-56≤56+15x-5
25x-20x-15x≤56-5-5+56
10x≤102
−x≤10210
−x≤515
x≥−515
∵x∈R
∴Solution set={x:x∈R,x≥−515}
Question 6
Find the range of values of a, which satisfy 7 ≤ – 4x + 2 < 12, x ∈ R. Graph these values of a on the real number line.
Sol :
7 < – 4x + 2 < 12
7<– 4x + 2 and – 4x + 2 < 12
4x≤-5 and -4x<10
x≤−54 and −x<104
x≤−54 and −x<52
x>−52
∵x∈R
∴Solution set−52<x≤−54
{x:x∈R,−52<x≤−54}
Solution set on number line
Question 7
If x∈R, solve 2x−3≥x+1−x3>25x
Sol :
2x−3≥x+1−x3>25x
2x−3≥x+1−x3 and x+1−x3>25x
2x−3≥3x+13−x and 3x+1−x3>25x
6x-9≥3x+1-x and 15x+5-5x>6x
6x-3x+x≥1+9 and 15x-6x-5x>-5
4x≥10 and 4x>-5
x≥104 and x>−54
x≥52
∴x≥52
∵x∈R
∴Solution set={x:x∈R,x≥52}
Comments
Post a Comment