ML Aggarwal Solution Class 10 Chapter 5 Quadratic Equations in One Variable MCQs
MCQs
Question 1
Which of the following is not a quadratic equation ?
(a) (x+2)2=2(x+3)
(b) x2+3x=(–1) (1–3x)
(c) (x+2)(x–1)=x2–2x–3
(d) x3–x2+2x+1=(x+1)3
Sol :
(a) (x + 2)2 = 2(x + 3)
⇒ x2 + 4x + 4 = 2x + 6
⇒ x2 + 4x – 2x + 4 – 6 = 0
⇒ x2 + 2x – 2
It is a quadratic equation.
$\Rightarrow x^{2}+1=0$
It is also quadratic equation.
(c) $(x+2)(x-1)=x^{2}-2 x-3$
$x^{2}-x+2 x-2=x^{2}-2 x-3$
$x^{2}-x^{2}+x+2 x-2+3=0 \Rightarrow 3 x+1=0$
It is not a quadratic equation.
(d) $x^{3}-x^{2}+2 x+1=(x+1)^{3}$
$=x^{3}+3 x^{2}+3 x+1$
$x^{3}-x^{2}+2 x+1$
$3 x^{2}+x^{2}-2 x-1+3 x+1=0$
$\Rightarrow 4 x^{2}+x=0$
It is a quadratic equation
Ans : (c)
Question 2
Which of the following is a quadratic equation ?
(a) (x – 2) (x + 1) = (x – 1) (x – 3)
(b) $(x+2)^{3}=2 x\left(x^{2}-1\right)$
Sol :
(a) (x – 2) (x + 1) = (x – 1) (x – 3)
⇒ x2 + x – 2x – 2 = x2 – 3x – x + 3
⇒ 3x + x – 2x + x = 3 + 2
⇒ 3x = 5
It is not a quadratic equation.
(b) $(x+2)^{3}=2 x\left(x^{2}-1\right)$
$x^{3}+6 x^{2}+12 x+8=2 x^{3}-2 x$
$x^{3}+6 x^{2}+12 x+8-2 x^{3}+2 x=0$
$-x^{3}+6 x^{2}+14 x+8=0$
It is not a quadratic equation.
(c) $x^{2}+3 x+1=(x-2)^{2}$
$x^{2}+3 x+1=x^{2}-4 x+4$
⇒3x+1+4 x-4=0
⇒7x-3=0
It is not a quadratic equation.
(d) $8(x-2)^{3}=(2 x-1)^{3}+3$
$8\left(x^{3}-6 x^{2}+12 x-8\right)$
$=8 x^{3}-12 x^{2}+6 x-1+3$
$8 x^{3}-48 x^{2}+96 x-64-8 x^{3}+12 x^{2}-6 x+1-3=0$
$-36 x^{2}+90 x-66=0$
It is a quadratic equation
Ans : (d)
Question 3
Which of the following equations has 2 as a root ?
(a) $x^{2}-4 x+5=0$
(b) $x^{2}+3 x-12=0$
(c) $2 x^{2}-7 x+6=0$
(d) $3 x^{2}-6 x-2=0$
Sol :
(a) $x^{2}-4 x+5=0$
$\Rightarrow(2)^{2}-4 x^{2}+5=0$
⇒ 4 – 8 + 5 = 0
⇒ 9 – 8 ≠ 0
2 is not its root.
Ans : (c)
Question 4
If $\frac{1}{2}$ is a root of the equation $x^{2}+k x-\frac{5}{4}=0$ then the value of k is
(a) 2
(b) – 2
(c) $\frac{1}{4}$
(d) $\frac{1}{2}$
Sol :
$\frac{1}{2}$ is a root of the equation
$x^{2}+k x-\frac{5}{4}=0$
Substituting the value of $x=\frac{1}{2}$ in the equation
$\left(\frac{1}{2}\right)^{2}+k \times \frac{1}{2}-\frac{5}{4}=0$
$\Rightarrow \frac{1}{4}+\frac{k}{2}-\frac{5}{4}=0$
$\Rightarrow \frac{k}{2}-1=0$
⇒k=1×2=2
∴k=2
Ans (a)
Question 5
If $\frac{1}{2}$ is a root of the quadratic equation $4 x^{2}-4 k x+k+5=0$ then the value of k is
Sol :
$\frac{1}{2}$ is a root of the equation
$4 x^{2}-4 k x+k+5=0$
Substituting the value of $x=\frac{1}{2}$ in the equation
$4\left(\frac{1}{2}\right)^{2}-4 \times k \times \frac{1}{2}+k+5=0$
1-2k+k+5=0
-k+6=0
k=6
Ans (d)
Question 6
The roots of the equation $x^{2}-3 x-10=0$ are
(a) 2,- 5
(b) – 2, 5
(c) 2, 5
(d) – 2, – 5
$=\frac{3 \pm \sqrt{9+40}}{2}=\frac{3 \pm \sqrt{49}}{2}=\frac{3+7}{2}$
∴$x=\frac{3+7}{2}=5$ and $x=\frac{3-7}{2}=\frac{-4}{2}=-2$
x = 5, – 2 or – 2, 5
Ans (b)
Question 7
If one root of a quadratic equation with rational coefficients is $\frac{3-\sqrt{5}}{2}$, then the other
(a) $\frac{-3-\sqrt{5}}{2}$
(b) $\frac{-3+\sqrt{5}}{2}$
(c) $\frac{3+\sqrt{5}}{2}$
(d) $\frac{\sqrt{3}+5}{2}$
Sol :
One root of a quadratic equation is $\frac{3-\sqrt{5}}{2}$ then other root will be $\frac{3+\sqrt{5}}{2}$
Ans (c)
Question 8
If the equation $2 x^{2}-5 x+(k+3)=0$ has equal roots then the value of k is
(a) $\frac{g}{8}$
(b) $-\frac{g}{8}$
(c) $\frac{1}{8}$
(d) $-\frac{1}{8}$
Sol :
$2 x^{2}-5 x+(k+3)=0$
a=2, b=-5, c=k+3
=25-8(k+3)
∴ Roots are equal.
$\therefore b^{2}-4 a c=0$
∴ 25-8(k+3)=0
⇒25-8k-24=0
⇒1-8k=0
⇒8 k=1
$\therefore k=\frac{1}{8}$
Ans (c)
Question 9
The value(s) of k for which the quadratic equation $2 x^{2}-k x+k=0$ has equal roots is (are)
(a) 0 only
(b) 4
(c) 8 only
(d) 0, 8
Sol :
$2 x^{2}-k x+k=0$
a=2, b=-k, c=k
$\therefore b^{2}-4 a c=(-k)^{2}-4 \times 2 \times k$
$\quad=k^{2}-8 k$
∴ Roots are equal. $\therefore b^{2}-4 a c=0$
$k^{2}-8 k=0$
⇒k(k-8)=0$
Either k=0
or k-8=0, then k=8
k=0,8
Ans (d)
Question 10
If the equation $3 x^{2}-k x+2 k=0$ roots, then the the value(s) of k is (are)
(a) 6
(b) 0 Only
(c) 24 only
(d) 0
Sol :
$3 x^{2}-k x+2 k=0$
Here, a=3, b=-k, c=2 k
$b^{2}-4 a c=(-k)^{2}-4 \times 3 \times 2 k$
$=k^{2}-24 k$
∴ Roots are equal. $\therefore b^{2}-4 a c=0$
$\therefore k^{2}-24 k=0$
⇒k(k-24)=0
Either k=0
or k-24=0, then k=24
∴ k=0, 24
Ans (d)
Question 11
If the equation $\{k+1\} x^{2}-2(k-1) x+1=0$ has equal roots, then the values of k are
(a) 1, 3
(b) 0, 3
(c) 0, 1
(d) 0, 1
Sol :
(k + 1)x² – 2(k – 1)x + 1 = 0
Here, a = k + 1, b = -2(k – 1), c = 1
Question 12
If the equation 2x² – 6x + p = 0 has real and different roots, then the values ofp are given by
⇒ 36-8p>0
⇒ 36-8p>0
⇒ 36>8p
⇒ $\frac{36}{8}>p$
⇒ $p<\frac{36}{8}$
⇒ $p<\frac{9}{2}$
Ans (a)
Question 13
The quadratic equation 2x² – √5x + 1 = 0 has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than two real roots
Sol :
2x² – √5x + 1 = 0
Here, a = 2, b = -√5, c = 1
$\because b^{2}-4 a c<0$
∵ It has no real roots.
Question 14
Which of the following equations has two distinct real roots ?
Sol :
(a) $2 x^{2}-3 \sqrt{2} x+\frac{9}{4}=0$
$b^{2}-4 a c=(-3 \sqrt{2})^{2}-4 \times 2 \times \frac{9}{4}=18-18=0$
∵ Roots are real and equal.
(b) $x^{2}+x-5=0$
$b^{2}-4 a c=(1)^{2}-4 \times 1 \times(-5)$
$=1+20=\sqrt{21}>0$
Roots are real and distinct.
Ans (b)
Question 15
Which of the following equations has no real roots ?
(a) x² – 4x + 3√2 = 0
(b) x² + 4x – 3√2 = 0
(c) x² – 4x – 3√2 = 0
(d) 3x² + 4√3x + 4 = 0
Sol :
(a) x² – 4x + 3√2 = 0
b² – 4ac = ( -4)² – 4 × 1 × 3√2
= 16 – 12√2
= 16 – 12(1.4)
= 16 – 16.8
= -0.8
b² – 4ac < 0
Roots are not real.
Ans (a)
Comments
Post a Comment