ML Aggarwal Solution Class 10 Chapter 5 Quadratic Equations in One Variable MCQs
MCQs
Question 1
Which of the following is not a quadratic equation ?
(a) (x+2)2=2(x+3)
(b) x2+3x=(–1) (1–3x)
(c) (x+2)(x–1)=x2–2x–3
(d) x3–x2+2x+1=(x+1)3
Sol :
(a) (x + 2)2 = 2(x + 3)
⇒ x2 + 4x + 4 = 2x + 6
⇒ x2 + 4x – 2x + 4 – 6 = 0
⇒ x2 + 2x – 2
It is a quadratic equation.
⇒x2+1=0
It is also quadratic equation.
(c) (x+2)(x−1)=x2−2x−3
x2−x+2x−2=x2−2x−3
x2−x2+x+2x−2+3=0⇒3x+1=0
It is not a quadratic equation.
(d) x3−x2+2x+1=(x+1)3
=x3+3x2+3x+1
x3−x2+2x+1
3x2+x2−2x−1+3x+1=0
⇒4x2+x=0
It is a quadratic equation
Ans : (c)
Question 2
Which of the following is a quadratic equation ?
(a) (x – 2) (x + 1) = (x – 1) (x – 3)
(b) (x+2)3=2x(x2−1)
Sol :
(a) (x – 2) (x + 1) = (x – 1) (x – 3)
⇒ x2 + x – 2x – 2 = x2 – 3x – x + 3
⇒ 3x + x – 2x + x = 3 + 2
⇒ 3x = 5
It is not a quadratic equation.
(b) (x+2)3=2x(x2−1)
x3+6x2+12x+8=2x3−2x
x3+6x2+12x+8−2x3+2x=0
−x3+6x2+14x+8=0
It is not a quadratic equation.
(c) x2+3x+1=(x−2)2
x2+3x+1=x2−4x+4
⇒3x+1+4 x-4=0
⇒7x-3=0
It is not a quadratic equation.
(d) 8(x−2)3=(2x−1)3+3
8(x3−6x2+12x−8)
=8x3−12x2+6x−1+3
8x3−48x2+96x−64−8x3+12x2−6x+1−3=0
−36x2+90x−66=0
It is a quadratic equation
Ans : (d)
Question 3
Which of the following equations has 2 as a root ?
(a) x2−4x+5=0
(b) x2+3x−12=0
(c) 2x2−7x+6=0
(d) 3x2−6x−2=0
Sol :
(a) x2−4x+5=0
⇒(2)2−4x2+5=0
⇒ 4 – 8 + 5 = 0
⇒ 9 – 8 ≠ 0
2 is not its root.
Ans : (c)
Question 4
If 12 is a root of the equation x2+kx−54=0 then the value of k is
(a) 2
(b) – 2
(c) 14
(d) 12
Sol :
12 is a root of the equation
x2+kx−54=0
Substituting the value of x=12 in the equation
(12)2+k×12−54=0
⇒14+k2−54=0
⇒k2−1=0
⇒k=1×2=2
∴k=2
Ans (a)
Question 5
If 12 is a root of the quadratic equation 4x2−4kx+k+5=0 then the value of k is
Sol :
12 is a root of the equation
4x2−4kx+k+5=0
Substituting the value of x=12 in the equation
4(12)2−4×k×12+k+5=0
1-2k+k+5=0
-k+6=0
k=6
Ans (d)
Question 6
The roots of the equation x2−3x−10=0 are
(a) 2,- 5
(b) – 2, 5
(c) 2, 5
(d) – 2, – 5
=3±√9+402=3±√492=3+72
∴x=3+72=5 and x=3−72=−42=−2
x = 5, – 2 or – 2, 5
Ans (b)
Question 7
If one root of a quadratic equation with rational coefficients is 3−√52, then the other
(a) −3−√52
(b) −3+√52
(c) 3+√52
(d) √3+52
Sol :
One root of a quadratic equation is 3−√52 then other root will be 3+√52
Ans (c)
Question 8
If the equation 2x2−5x+(k+3)=0 has equal roots then the value of k is
(a) g8
(b) −g8
(c) 18
(d) −18
Sol :
2x2−5x+(k+3)=0
a=2, b=-5, c=k+3
=25-8(k+3)
∴ Roots are equal.
∴b2−4ac=0
∴ 25-8(k+3)=0
⇒25-8k-24=0
⇒1-8k=0
⇒8 k=1
∴k=18
Ans (c)
Question 9
The value(s) of k for which the quadratic equation 2x2−kx+k=0 has equal roots is (are)
(a) 0 only
(b) 4
(c) 8 only
(d) 0, 8
Sol :
2x2−kx+k=0
a=2, b=-k, c=k
∴b2−4ac=(−k)2−4×2×k
=k2−8k
∴ Roots are equal. ∴b2−4ac=0
k2−8k=0
⇒k(k-8)=0$
Either k=0
or k-8=0, then k=8
k=0,8
Ans (d)
Question 10
If the equation 3x2−kx+2k=0 roots, then the the value(s) of k is (are)
(a) 6
(b) 0 Only
(c) 24 only
(d) 0
Sol :
3x2−kx+2k=0
Here, a=3, b=-k, c=2 k
b2−4ac=(−k)2−4×3×2k
=k2−24k
∴ Roots are equal. ∴b2−4ac=0
∴k2−24k=0
⇒k(k-24)=0
Either k=0
or k-24=0, then k=24
∴ k=0, 24
Ans (d)
Question 11
If the equation {k+1}x2−2(k−1)x+1=0 has equal roots, then the values of k are
(a) 1, 3
(b) 0, 3
(c) 0, 1
(d) 0, 1
Sol :
(k + 1)x² – 2(k – 1)x + 1 = 0
Here, a = k + 1, b = -2(k – 1), c = 1
Question 12
If the equation 2x² – 6x + p = 0 has real and different roots, then the values ofp are given by
⇒ 36-8p>0
⇒ 36-8p>0
⇒ 36>8p
⇒ 368>p
⇒ p<368
⇒ p<92
Ans (a)
Question 13
The quadratic equation 2x² – √5x + 1 = 0 has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than two real roots
Sol :
2x² – √5x + 1 = 0
Here, a = 2, b = -√5, c = 1
∵b2−4ac<0
∵ It has no real roots.
Question 14
Which of the following equations has two distinct real roots ?
Sol :
(a) 2x2−3√2x+94=0
b2−4ac=(−3√2)2−4×2×94=18−18=0
∵ Roots are real and equal.
(b) x2+x−5=0
b2−4ac=(1)2−4×1×(−5)
=1+20=√21>0
Roots are real and distinct.
Ans (b)
Question 15
Which of the following equations has no real roots ?
(a) x² – 4x + 3√2 = 0
(b) x² + 4x – 3√2 = 0
(c) x² – 4x – 3√2 = 0
(d) 3x² + 4√3x + 4 = 0
Sol :
(a) x² – 4x + 3√2 = 0
b² – 4ac = ( -4)² – 4 × 1 × 3√2
= 16 – 12√2
= 16 – 12(1.4)
= 16 – 16.8
= -0.8
b² – 4ac < 0
Roots are not real.
Ans (a)
Comments
Post a Comment