ML Aggarwal Solution Class 10 Chapter 5 Quadratic Equations in One Variable Exercise 5.1
Exercise 5.1
Question 1
Check whether the following are quadratic equations:
It is a quadratic equation as it is power of 2.
(ii)
(2x + 1) (3x – 2) = 6(x + 1) (x – 2)
6x² – 4x + 3x – 2 = 6(x² – 2x + x – 2)
6x² – x – 2 = 6x² – 12x + 6x – 12
12x-6x-x=-12+2
5x=-10
It is not a quadratic equation.
(iii)
$(x-3)^{3}+5=x^{3}+7 x^{2}-1$
$x^{3}-3 x^{2} \times 3+3 x \times 9-27+5=x^{3}+7 x^{2}-1$
$-9 x^{2}+27 x-22-7 x^{2}+1=0$
$-16 x^{2}+27 x-21=0$
$16 x^{2}-27 x+21=0$
It is a quadratic equation
(iv)
It is a quadratic equation
(v)
$x+\frac{2}{x}=x^{2}, x \neq 0$
It is not a quadratic equation
(vi)
Question 2
In each of the following, determine whether the given numbers are roots of the given equations or not;
(i) x² – x + 1 = 0; 1, – 1
(ii) x² – 5x + 6 = 0; 2, – 3
(iii) 3x² – 13x – 10 = 0; 5,$\frac{-2}{3}$
(iv) 6x² – x – 2 = 0; $\frac{-1}{2}, \frac{2}{3}$
Sol :
(i)
x² – x + 1 = 0; 1, -1
Where x = 1, then
(1)² – 1 + 1 = 1 – 1 + 1 = 1 ≠ 0
∴ x = 1 does not satisfy it
∴x=-1, does not satisfy it
∴x=1,-1 are not roots of the equation
(ii)
$x^{2}-5 x+6=0 ; 2,-3$
When x=2, then
$(2)^{2}-5 \times 2+6$
=4-10+6=10-10=0
∴x=2 is its root
Where x=-3, then
$(-3)^{2}-5(-3)+6$
$=9+15+6=30 \neq 0$
∴x=-3 is not its solution
∴2 is root of the equation by -3 is not a root.
(iii)
$3 x^{2}-13 x-10=0 ; 5, \frac{-2}{3}$
x=5
$3(5)^{2}-13 \times 5-10=75-65-10$
=75-75=0
∴x=5 is it root
If $x=\frac{-2}{3},$ then
$3\left(\frac{-2}{3}\right)^{2}-13 \times \frac{-2}{3}-10$
$=\frac{3 \times 4}{9}+\frac{26}{3}-10$
$=\frac{4}{3}+\frac{26}{3}-10=\frac{30}{3}-10=10-10=0$
$\therefore x=\frac{-2}{3}$ is also its root.
Hence both $5, \frac{-2}{3}$ are its roots.
(iv)
$6 x^{2}-x-2=0 ; \frac{-1}{2}, \frac{2}{3}$
If $x=\frac{-1}{2},$ then
$=6\left(\frac{-1}{2}\right)^{2}-\left(\frac{-1}{2}\right)-2$
$=6 \times \frac{1}{4}+\frac{1}{2}-2=\frac{3}{2}+\frac{1}{2}-2$
$=\frac{4}{2}-2=0$
$\therefore x=\frac{-1}{2}$ is its root
If $x=\frac{2}{3},$ then
$=6 \times \frac{4}{9}-\frac{2}{3}-2=\frac{8}{3}-\frac{2}{3}-2$
$=\frac{6}{3}-2=0$
$\therefore x=\frac{2}{3}$ is also its root.
Hence $\frac{-1}{2}, \frac{2}{3}$ are both its root.
Question 3
In each of the following, determine whether the given numbers are solutions of the given equation or not:
(i) x² – 3√3x + 6 = 0; √3, – 2√3
(ii) x² – √2x – 4 = 0, x = – √2, 2√2
Sol :
(i) x² – 3√3x + 6 = 0; √3, -2√3
(a) Substituting the value of x = √3
$=(\sqrt{3})^{2}-3 \sqrt{3} \times \sqrt{3}+6=3-9+6=0$=R.H.S
∴$x=\sqrt{3}$ is its solution
(b) $x=-2 \sqrt{3}$
Substituting $x=-2 \sqrt{3}$
L.H.S. $=x^{2}-3 \sqrt{3} x+6$
$=(-2 \sqrt{3})^{2}-3 \sqrt{3}(-2 \sqrt{3})+6$
=12+18+6=36≠0
∵$x=-2 \sqrt{3}$ is not its solution
(ii) $x^{2}-\sqrt{2} x-4=0, x=-\sqrt{2}, 2 \sqrt{2}$
(a) $x=-\sqrt{2}$
Substituting $x=-\sqrt{2}$
$\mathrm{L.H.S.}=x^{2}-\sqrt{2} x-4$
$=(-\sqrt{2})^{2}-\sqrt{2}(-\sqrt{2})-4$
=2+2-4=0=R.H.S
∴$x=-\sqrt{2}$ is its solution
(b) $x=-2 \sqrt{2}$
Substituting $x=-2 \sqrt{2}$
L.H.S. $=x^{2}-\sqrt{2} x-4$
$=(-2 \sqrt{2})^{2}-\sqrt{2}(-2 \sqrt{2})-4$
=8-4-4=8-8=0=R.H.S
∴$x=-2 \sqrt{2}$ is its solution
Question 4
(i) If $-\frac{1}{2}$ is a solution of the equation 3x² + 2kx – 3 = 0, find the value of k.
Sol :
$x=-\frac{1}{2}$ is a solution of the
3x² + 2kx – 3 = 0,
Substituting the value of x in the given equation
$3 \times \frac{1}{4}-k-3=0$
$\frac{3}{4}-k-3=0$
$\Rightarrow k=\frac{3}{4}-3=-\frac{9}{4}$
Hence $k=-\frac{9}{4}$
(ii) $7 x^{2}+k x-3=0, x=\frac{2}{3}$
$\because x=\frac{2}{3}$ is its solution
$\therefore 7\left(\frac{2}{3}\right)^{2}+k\left(\frac{2}{3}\right)-3=0$
$\Rightarrow 7 \times \frac{4}{9}+\frac{2}{3} k-3=0$
$\Rightarrow \frac{28}{9}-3+\frac{2}{3} k=0$
$\Rightarrow \frac{2}{3} k=3-\frac{28}{9}$
$\Rightarrow \frac{2}{3} k=\frac{27-28}{9} \Rightarrow \frac{2}{3} k=\frac{-1}{9}$
$\Rightarrow k=\frac{-1}{9} \times \frac{3}{2}=\frac{-1}{6}$
Hence $k=\frac{-1}{6}$
Question 5
(i) If √2 is a root of the equation kx² + √2 – 4 = 0, find the value of k.
(ii) If a is a root of the equation x² – (a + b)x + k = 0, find the value of k.
Sol :
(i) kx² + √2 – 4 = 0, x = √2
x = √2 is its solution
Question 6
If $\frac{2}{3}$ and – 3 are the roots of the equation px² + 7x + q = 0, find the values of p and q.
Substituting the value of $x=\frac{2}{3}$ and – 3 respectively, we get
⇒$\frac{4}{9} p+\frac{14}{3}+q=0$
⇒4 p+42+9 q=0
⇒4p+9q=-42...(i)
and $p(-3)^{2}+7(-3)+q=0$
⇒9p-21+q=0
⇒q=21-9p...(ii)
Substituting the value of q in (i)
⇒4 p+9(21-9 p)=-42
⇒4 p+189-81 p=-42
⇒-77 p=-42-189=-231
⇒$p=\frac{-231}{-77}=3$
∴q=21-9×3
=21-27=-6
∴p=3, q=-6
Comments
Post a Comment