ML Aggarwal Solution Class 10 Chapter 5 Quadratic Equations in One Variable Exercise 5.2
Exercise 5.2
Question 1
(i) 4x² = 3x
Sol :
(i) 4x² = 3x
x(4x – 3) = 0
Either x = 0,
∴x=0,34
(ii) x2−5x2=0
x2−5x=0
⇒x(x-5)=0
Either x=0 or x-5=0, then x=5
Hence , x=0,5
Question 2
(i) (x – 3) (2x + 5) = 0
(ii) x (2x + 1) = 6
Sol :
(i)
(x – 3) (2x + 5) = 0
Either x – 3 = 0,
Then x = 3
Hence, x=3,=−52
(ii)
x(2x+1)=6
x(2 x+1)=6
2x2+x−6=0
2x2+4x−3x−6=0
2x(x+2)-3(x+2)=0
(x+2)(2x+3)=0
Either x+2=0 , then x=-2
2x-3=0 then
2x=3
x=32
Hence , x=−2,32
Question 3
(i) x² – 3x – 10 = 0
(ii) x(2x + 5) = 3
Sol :
(i)
x² – 3x – 10 = 0
⇒ x² – 5x + 2x – 10 = 0
⇒ x(x – 5) + 2(x – 5) = 0
x(2x+5)=3
x(2x+5)=3
2x2+5x−3=0
2x2+6x−x−3=0
2 x(x+3)-1(x+3)=0
(x+3)(2 x-1)=0
Either x+3=0, then x=-3
2x-1=0 then 2x=1
x=12
∴x=−3,12
Question 4
(i) 3x² – 5x – 12 = 0
(ii) 21x² – 8x – 4 = 0
Sol :
(i) 3x² – 5x – 12 = 0
⇒ 3x² – 9x + 4x – 12 = 0
⇒ 3x (x – 3) + 4(x – 3) = 0
⇒ (x-3)(3x+4)=0
Either x-3=0, then x=3
3x+4=0 then 3x=-4
x=−43
Hence, x=3,−43
(ii)
21x2−8x−4=0
21x2−8x−4=0
21x2−14x+6x−4=0
7 x(3 x-2)+2(3 x-2)=0
(3 x-2)(7 x+2)=0
Either 3x-2=0 then 3x=2
x=23
or 7x+2=0 then 7x=-2
x=−27
Hence,x=23,−27
Question 5
(i) 3x² = x + 4
(ii) x(6x – 1) = 35
Sol :
(i)
3x² = x + 4
⇒ 3x² – x – 4 = 0
⇒ 3x² – 4x + 3x – 4 = 0
(ii)
x(6 x-1)=35
x(6 x-1)=35
6x2−x−35=0
6x2−15x+14x−35=0
3x(2x−5)+7(2x−5)=0
(2x−5)(3x+7)=0
Either 2x-5=0 then 2x=5
x=52
or 3x+7=0, then 3x=-7
Hence x=52,−73
Question 6
(i) 6p² + 11p – 10 = 0
Sol :
(i)
6p² + 11p – 10 = 0
⇒ 6p² + 15p – 4p – 10 = 0
⇒ 3p(2p + 5) – 2(2p + 5) = 0
Either 2p+5=0, then 2 p=-5 ⇒p=−52
or 3 p-2=0, then 3 p=2⇒p=23
Hence p=−52,23
(ii)
23x2−13x=1
23x2−13x=1
2x2−x=3⇒2x2−x−3=0
2x2−3x+2x−3=0
x(2 x-3)+1(2 x-3)=0
(2 x-3)(x+1)=0
Either 2 x-3=0, then 2 x=3 ⇒x=32
x+1=0, then x=-1
x+1=0 then x=-1
Hence, x=32,−1
Question 7
(i) (x – 4)² + 5² = 13²
(ii) 3(x – 2)² = 147
Sol :
(i)
(x – 4)² + 5² = 13²
x² – 8x + 16 + 25 = 169
Hence x=16,-8
(ii)
3(x−2)2=147
3(x−2)2=147
3(x2−4x+4)=147
3x2−12x+12−147=0
3x2−12x−135=0
x2−4x−45=0 (dividing by 3)
x2−9x+5x−45=0
x(x-9)+5(x-9)=0
(x-9)(x+5)=0
Either x-9=0, then x=9
x+5=0 then x=-5
Hence x=9,-5
Question 8
(i) 17(3x−5)2=28
(ii) 3(y² – 6) = y(y + 7) – 3
(3x−5)2=28×7
9x2−30x+25=196
9x2−30x+25−196=0
9x2−30x−171=0
3x2−10x−57=0 (dividing by 3)
3x2−19x+9x−57=0
x(3 x-19)+3(3 x-19)=0
(3 x-19)(x+3)=0
Either 3x-19=0 then 3x=19
x=193 or x+3=0, then x=-3
Hence x=193,−3
(ii)
3(y2−6)=y(y+7)−3
3(y2−6)=y(y+7)−3
3(y2−6)=y2+7y−3
3y2−18=y2+7y−3
3y2−y2−7y−18+3=0
2y2−7y−15=0
2y2−10y+3y−15=0
2y(y-5)+3(y-5)=0
(y-5)(2 y+3)=0
Either y-5=0, then y=5
or 2y+3=0 then 2y=-3 ⇒y=−32
Hence y=−32,5
Question 9
x² – 4x – 12 = 0,when x∈N
Sol :
x² – 4x – 12 = 0
⇒ x² – 6x + 2x – 12 = 0
⇒ x (x – 6) + 2 (x – 6) = 0
⇒ (x – 6) (x + 2) = 0
Either x – 6 = 0, then x = 6
or x + 2 = 0, then x = -2
But -2 is not a natural number
∴ x = 6
Question 10
2x² – 8x – 24 = 0 when x∈I
Sol :
2x² – 8x – 24 = 0
⇒ x² – 4x – 12 = 0 (Dividing by 2)
⇒ x² – 6x + 2x – 12 = 0
⇒ x (x – 6) + 2 (x – 6) = 0
⇒ (x – 6) (x + 2) = 0
Either x – 6 = 0, then, x = 6
or x + 2 = 0, then x = – 2
Hence x = 6, – 2
Question 11
5x² – 8x – 4 = 0 when x∈Q
Sol :
5x² – 8x – 4 = 0
∵ 5 × ( – 4) = – 20
-20 = – 10 + 2
-8 = – 10 + 2
Either x-2=0, then x=2
5x+2=0 then 5x=-2
x=−25
∴,x=2,−25
Question 12
2x² – 9x + 10 = 0,when
(i)x∈N
(ii)x∈Q
Sol :
2x² – 9x + 10 = 0
⇒ 2x² – 4x – 5x + 10 = 0
⇒ 2x(x – 2) – 5(x – 2) = 0
(i) when x∈N , then x=2
(ii) when x∈Q, then x=2,52
Question 13
(i) a²x² + 2ax + 1 = 0, a≠0
(ii) x² – (p + q)x + pq = 0
Sol :
(i)
a²x² + 2ax + 1 = 0
⇒ a²x² + ax + ax + 1 = 0
Hence x=−1a,−1a
(ii)
x2−(p+q)x+pq=0
x2−(p+q)x+pq=0
x2−px−qx+pq=0
x(x-p)-q(x-p)=0
(x-p)(x-q)=0
Either x-p=0 then x=p
x-q=0 then x=q
Hence x=p, q
Question 14
a²x² + (a² + b²)x + b² = 0, a≠0
Sol :
a²x² + (a² + b²)x + b² = 0
⇒ a²x(x + 1) + b²(x + 1) = 0
a2x+b2=0, then a2x=−b2⇒x=−b2a2
Hence x=−1,−b2a2
Question 15
(i) √3x² + 10x + 7√3 = 0
(ii) 4√3x² + 5x – 2√3 = 0
Sol :
(i)
√3x² + 10x + 7√3 = 0
[ ∵ √3 x 7√3 = 7 x 3 = 21]
⇒ √3x(x + √3) + 7(x + √3) = 0
Either x+√3=0, then x=−√3
or √3x+7=0, then √3x=−7
x=−7√3
⇒x=−7×√3√3×√3
=−7√33
Hence x=−√3,−7√33
(ii)
⇒4√3x2+5x−2√3=0
⇒4√3x2+5x−2√3=0
⇒{4√3×(−2√3)=8×(−3)=−24}
⇒4√3x2+8x−3x−2√3=0
⇒4x(√3x+2)−√3(√3x+2)=0
⇒(√3x+2)(4x−√3)=0
Either √3x+2=0, then √3x=−2
⇒x=−2√3
⇒x=−−2×√3√3×√3=−−2√33
⇒4x−√3=0, then 4x=√3
⇒x=√34
Hence x=−2√33,√34
Question 16
(i) x² – (1 + √2)x + √2 = 0
Sol :
(i)
x² – (1 + √2)x + √2 = 0
⇒ x² – x – √2x + √2 = 0
(ii)
x+1x=2120
x2+1x=4120
20x2+20=41x
20x2−16x−25x+20=0
4 x(5 x-4)-5(5 x-4)=0
(5 x-4)(4 x-5)=0
Either 5x-4=0, then 5x=4⇒x=45
or 4x-5=0, then 4x=5 ⇒x=54
Hence x=45,54 Ans.
Question 17
(i) 2x2−5x+2=0,x≠0
(ii) x215−x3−10=0
Sol :
(i)
2x2−52+2=0,x≠0
⇒ 2 – 5x + 2x² = 0
⇒2x2−5x+2=0
{∵2×2=44=−4×(−1)−5=−4−1}
⇒2x2−4x−x+2=0
⇒2x(x-2)-1(x-2)=0
⇒(x-2)(2 x-1)=0
Either x-2=0, then x=2
or 2 x-1=0, then 2 x=1 ⇒x=12
∴x=2,12
(ii)
⇒x215−x3−10=0
⇒x2−5x−150=0 {∵−150=−15×10−5=−15+10}
⇒x2−15x+10x−150=0
⇒x(x-15)+10(x-15)=0
⇒(x-15)(x+10)=0
Either x-15=0, then x=15
⇒or x+10=0, then x=-10
⇒x=15,-10
Question 18
(i) 3x−8x=2
(ii) x+2x+3=2x−33x−7
Sol :
(i)
⇒3x−8x=2
⇒3x2−8x=2
⇒3x2−8=2x
⇒3x2−2x−8=0
⇒3x2−6x+4x−8=0
⇒3x(x-2)+4(x-2)=0
⇒(x-2)(3 x+4)=0
Either x-2=0, then x=2
⇒or x+4=0,then3x=−4\Rightarrow x=\frac{-4}{3}$
Hence x=2,−43 Ans.
(ii)
⇒x+2x+3=2x−33x−7
⇒(x+2)(3 x-7)=(2 x-3)(x+3)
⇒3x2−7x+6x−14=2x2+6x−3x−9
⇒3x2−x−14=2x2+3x−9
⇒3x2−x−14−2x2−3x+9=0
⇒x2−4x−5=0
⇒x2−5x+x−5=0
⇒x(x-5)+1(x-5)=0
⇒(x-5)(x+1)=0
Either x-5=0, then x=5
⇒or x+1=0, then x=-1
Hence x=5,-1
Question 19
(i) 8x+3−32−x=2
(ii) xx−1+x−1x=212
Sol :
(i)
8x+3−32−x=2
16−8x−3x−9(x+3)(2−x)=2
⇒−11x+72x−x2+6−3x=2
⇒−11x+7=4x−2x2+12−6x
⇒−11x+7−4x+2x2−12+6x=0
⇒2x2−9x−5=0
⇒2x2−10x+x−5=0
⇒2x(x-5)+1(x-5)=0
⇒(x-5)(2 x+1)=0
Either x-5=0,thenx=5$
or 2 x+1=0, then 2 x=-1
⇒x=−12
Hence x=5,−12 Ans.
(ii)
xx−1+x−1x=212
xx−1+x−1x=212
xx−1+x−1x=52
x2+x2−2x+1x(x−1)=52
2x2−2x+1x2−x=52
⇒4x2−4x+2=5x2−5x
⇒4x2−4x+2−5x2+5x=0
⇒−x2+x+2=0⇒x2−x−2=0
⇒x2−2x+x−2=0
⇒x(x-2)+1(x-2)=0
⇒(x-2)(x+1)=0
Either x-2=0, then x=2
or x+1=0, then x=-1
Hence x=2,-1
Question 20
(i) xx+1+x+1x=3415
(ii) x+1x−1+x−2x+2=3
Sol :
(i)
xx+1+x+1x=3415
x2+x2+2x+1x(x+1)=3415
⇒2x2+2x+1x2+x=3415
⇒30x2+30x+15=34x2+34x
⇒30x2+30x+15−34x2−34x=0
⇒−4x2−4x+15=0
⇒4x2+4x−15=0
⇒4x2+10x−6x−15=0
⇒2x(2 x+5)-3(2x+5)=0
⇒(2x+5)(2 x-3)=0
Either 2x+5=0, then 2x=-5
⇒x=−52
or 2x-3=0, then 2x=3⇒x=32
Hence x=−52,32 Ans.
(ii)
x+1x−1+x−2x+2=3
x+1x−1+x−2x+2=3
⇒(x+1)(x+2)+(x−2)(x−1)(x−1)(x+2)=3
⇒x2+2x+x+2+x2−x−2x+2x2+2x−x−2
⇒x2+3x+2+x2−3x+2x2+x−2=31
⇒2x2+4=3x2+3x−6
⇒2x2+4−3x2−3x+6=0
⇒−x2−3x+10=0
⇒x2+3x−10=0
⇒x2+5x−2x−10=0
⇒x(x+5)-2(x+5)=0
⇒(x+5)(x-2)=0
Either x+5=0, then x=-5
or x-2=0, then x=2
Hence x=-5,2 Ans.
Question 21
(i) 1x−3−1x+5=16
(ii) x−3x+3+x+3x−3=212
Sol :
(i)
1x−3−1x+5=16
x+5−x+3(x−3)(x+5)=16⇒8x2+2x−15=16
⇒x2+2x−15=48
⇒x2+2x−15−48=0
⇒x2+2x−63=0⇒x2+9x−7x−63=0
⇒x(x+9)-7(x+9)=0
⇒(x+9)(x-7)=0
Either x+9=0, then x=-9
or x-7=0, then x=7
Hence x=-9,7
(ii)
x−3x+3+x+3x−3=212
x−3x+3+x+3x−3=212
Put x−3x+3=a, then x+3x−3=1a
∴a+1a=52
2a2+2=5a
⇒2a2−5a+2=0⇒2a2−a−4a+2=0
⇒a(2a-1)-2(2a-1)=0
⇒2a-1)(a-2)=0
Either 2a-1=0, then a=12
or a-2=0, then a=2
(a) When a=12, then
x−3x+3=12
⇒2x-6=x+3
2x-x=3+6
x=9
(b)When a=2, then
x−3x+3=21
2x+6=x-3
2x-x=-3-6
x=-9
∴x=9,-9
Question 22
(i) aax−1+bbx−1=a+b,a+b≠0,ab≠0
(ii) 12a+b+2x=12a+1b+12x
Sol :
(i) aax−1+bbx−1=a+b
⇒(aax−1−b)+(bbx−1−a)=0
⇒a−abx+b(ax−1)+b−abx+a(bx−1)=0
⇒(a+b−abx)[1ax−1+1bx−1]=0
⇒(a+b−abx)[bx−1+ax−1(ax−1)(bx−1)]=0
⇒(a+b−abx)(ax+bx−2)(ax−1)(bx−1)=0
⇒(a+b−abx)(ax+bx−2)=0
Either a+b−abx=0, then a+b=abx
x=a+bab
or ax+bx-2=0, then x(a+b)=2
x=2a+b
Hence x=a+bab,2a+b Ans.
(ii) 12a+b+2x=12a+1b+12x
⇒12a+b+2x−12x=12a+1b
⇒2x−(2a+b+2x)(2a+b+2x)2x=b+2a2ab
⇒−(2a+b)(2a+b+2x)2x=(2a+b)2ab
⇒−1(2a+b+2x)2x=12ab
⇒-2ab=(2a+b+2x)2x
⇒4ax+2xb+4x2=−2ab
⇒4x2+2bx+4ax+2ab=0
⇒2 x(2 x+b)+2a(2 x+b)=0
⇒(2 x+2 a)(2 x+b)=0
⇒2x+2a=0 or 2x+b=0
x=-a or x=−b2
Hence, the roots of the given equation are
-a and −b2. Ans.
Question 23
1x+6+1x−10=3x−4
Sol :
1x+6+1x−10=3x−4
x−10+x+6(x+6)(x−10)=3x−4
⇒2x2−8x−4x+16=3(x2−4x−60)
⇒2x2−8x−4x+16=3x2−12x−180
⇒2x2−12x+16−3x2+12x+180=0
⇒−x2+196=0
⇒x2−196=0
⇒(x)2−(14)2=0
⇒(x+14)(x-14)=0
Either x+14=0, then x=-14
or x-14=0, then x=14
∴ x=14,-14
Question 24
(i) √3x+4=x
(ii) √x(x−7)=3√2
Sol :
(i) √3x+4=x
Squaring on both sides
L.H.S. =√3×(−1)+4=√−3+4=√1=1
R.H.S.=x=-1
∵ L.H.S.≠R.H.S
∴ x=-1 is not its root, Hence x=4
(ii)
√x(x−7)=3√2
√x(x−7)=3√2,
Squaring both sides,
x(x-7)=9×2
⇒x2−7x=18
⇒x2−7x−18=0
⇒x2−9x+2x−18=0
⇒x(x-9)+2(x-9)=0
⇒(x-9)(x+2)=0
Either x-9=0, then x=9 or x+2=0, then x=-2
∴ x=9,-2
Check :
(i) If x=9, then L.H.S. =√x(x−7)=√9(9−7)
=√9×2=√18=√9×2=3√2=R.H.S
x=9 is a root
(ii) If x=-2 then
L.H.S. =√x(x−7)=√−2(−2−7)
=√−2×−9=√18=√9×2=3√2=R.H.S
∴x=-2 is also its root Hence x=9,-2
Question 25
Use the substitution y = 3x + 1 to solve for x : 5(3x + 1 )² + 6(3x + 1) – 8 = 0
Sol :
y = 3x + 1
Now, 5(3x + 1)² + 6(3x + 1) – 8 = 0
5y2+6y−8=0
⇒5y2+10y−4y−8=0
{∵5×(−8)=−40∴−40=10×(−4)6=10−4}
⇒5y(y+2)-4(y+2)=0
⇒(y+2)(5y-4)=0
Either y+2=0, then y=-2
or 5y-4=0 then 5y=4 ⇒y=45
(i) If y=-2, then 3x+1=-2 ⇒3x=−2−1
⇒3x=-3
⇒x=−33=−1
(ii)
If y=45, then 3x+1=45
⇒3x=45−1=−15
Hence x=−1,−115
Question 26
Find the values of x if p + 1 =0 and x² + px – 6 = 0
Sol :
p + 1 = 0, then p = – 1
Substituting the value of p in the given quadratic equation
x² + ( – 1)x – 6 = 0
⇒ x² – x – 6 = 0
⇒ x² – 3x + 2x – 6 = 0
⇒ x (x – 3) + 2 (x – 3) = 0
⇒ (x – 3) (x + 2) = 0
Either x – 3 = 0, then x = 3
or x + 2 = 0, then x = – 2
Hence x = 3, -2
Question 27
Find the values of x if p + 7 = 0, q – 12 = 0 and x² + px + q = 0,
Sol :
p + 7 = 0, then p = – 7
and q – 12 = 0, then q = 12
Substituting the values of p and q in the given quadratic equation,
x² – 7x + 12 = 0
⇒ x² – 3x – 4x + 12 = 0
⇒ x (x – 3) – 4 (x – 3) = 0
⇒ (x – 3) (x – 4) = 0
Either x – 3 = 0, then x = 3
or x – 4 = 0, then x = 4
Hence x = 3, 4
Question 29
If x = p is a solution of the equation x(2x + 5) = 3, then find the value of p.
Sol :
Given, x = p and x(2x + 5) = 3
Substituting the value of p, we get
p(2p + 5) = 3
⇒ 2p² + 5p – 3 = 0
⇒ 2p² + 6p – p – 3 = 0
⇒ 2p(p+3)-1(p+3)=9
⇒ (p+3)(2 p-1)=0
Either p+3=0 then p=-3
or 2p-1=0 then 2p=1
p=12
∴p=12,−3
Comments
Post a Comment