ML Aggarwal Solution Class 10 Chapter 5 Quadratic Equations in One Variable Exercise 5.2

Exercise 5.2

Question 1

(i) 4x² = 3x

(ii) x25x2=0

Sol :

(i) 4x² = 3x

x(4x – 3) = 0

Either x = 0,

or 4x-3=0 then 4x=3
x=34

x=0,34


(ii) x25x2=0

x25x=0

⇒x(x-5)=0

Either x=0 or x-5=0, then x=5

Hence , x=0,5


Question 2

(i) (x – 3) (2x + 5) = 0

(ii) x (2x + 1) = 6

Sol :

(i) 

(x – 3) (2x + 5) = 0

Either x – 3 = 0,

Then x = 3

2x+5=0
2x=-5
x=52

Hence, x=3,=52


(ii)

x(2x+1)=6

x(2 x+1)=6

2x2+x6=0

2x2+4x3x6=0

2x(x+2)-3(x+2)=0

(x+2)(2x+3)=0

Either x+2=0 , then x=-2

2x-3=0 then 

2x=3

x=32

Hence , x=2,32


Question 3

(i) x² – 3x – 10 = 0

(ii) x(2x + 5) = 3

Sol :

(i) 

x² – 3x – 10 = 0

⇒ x² – 5x + 2x – 10 = 0

⇒ x(x – 5) + 2(x – 5) = 0

⇒ (x-5)(x+2)=0
Either x-5=0 then x=5
x+2=0 then x=-2
Hence , x=5,-2

(ii)

x(2x+5)=3

x(2x+5)=3

2x2+5x3=0

2x2+6xx3=0

2 x(x+3)-1(x+3)=0

(x+3)(2 x-1)=0

Either x+3=0, then x=-3

2x-1=0 then 2x=1 

x=12

x=3,12


Question 4

(i) 3x² – 5x – 12 = 0

(ii) 21x² – 8x – 4 = 0

Sol :

(i) 3x² – 5x – 12 = 0

⇒ 3x² – 9x + 4x – 12 = 0

⇒ 3x (x – 3) + 4(x – 3) = 0

⇒ (x-3)(3x+4)=0

Either x-3=0, then x=3

3x+4=0 then 3x=-4

x=43

Hence, x=3,43


(ii)

21x28x4=0

21x28x4=0

21x214x+6x4=0

7 x(3 x-2)+2(3 x-2)=0

(3 x-2)(7 x+2)=0

Either 3x-2=0 then 3x=2

x=23

or 7x+2=0 then 7x=-2

x=27

Hence,x=23,27 


Question 5

(i) 3x² = x + 4

(ii) x(6x – 1) = 35

Sol :

(i) 

3x² = x + 4

⇒ 3x² – x – 4 = 0

⇒ 3x² – 4x + 3x – 4 = 0

⇒ x(3x-4)+1(3x-4)=0
⇒ (3x-4)(x+1)=0
Either 3x-4=0 , then 3x=4
x=43
or x+1=0 , then x=-1

Hence ,x=43,1

(ii)

x(6 x-1)=35

x(6 x-1)=35

6x2x35=0

6x215x+14x35=0

3x(2x5)+7(2x5)=0

(2x5)(3x+7)=0

Either 2x-5=0 then 2x=5

x=52

or 3x+7=0, then 3x=-7

x=73

Hence x=52,73


Question 6

(i) 6p² + 11p – 10 = 0

(ii) 23x213x=1

Sol :

(i) 

6p² + 11p – 10 = 0

⇒ 6p² + 15p – 4p – 10 = 0

⇒ 3p(2p + 5) – 2(2p + 5) = 0

⇒ (2 p+5)(3 p-2)=0

Either 2p+5=0, then 2 p=-5 p=52

or 3 p-2=0, then 3 p=2p=23

Hence p=52,23


(ii)

23x213x=1

23x213x=1

2x2x=32x2x3=0

2x23x+2x3=0

x(2 x-3)+1(2 x-3)=0

(2 x-3)(x+1)=0

Either 2 x-3=0, then 2 x=3 x=32

x+1=0, then x=-1

x+1=0 then x=-1

Hence, x=32,1


Question 7

(i) (x – 4)² + 5² = 13²

(ii) 3(x – 2)² = 147

Sol :

(i) 

(x – 4)² + 5² = 13²

x² – 8x + 16 + 25 = 169

$x^{2}-8 x+41-169=0
x28x128=0
x216x+8x128=0
x(x-16)+8(x-16)=0
(x-16)(x+8)=0
Either  x-16=0 then x=16
or x+8=0 then x=-8

Hence x=16,-8


(ii)

3(x2)2=147

3(x2)2=147

3(x24x+4)=147

3x212x+12147=0

3x212x135=0

x24x45=0 (dividing by 3)

x29x+5x45=0

x(x-9)+5(x-9)=0

(x-9)(x+5)=0

Either x-9=0, then x=9

x+5=0 then x=-5

Hence x=9,-5


Question 8

(i) 17(3x5)2=28

(ii) 3(y² – 6) = y(y + 7) – 3

Sol :
(i) 
17(3x5)2=28

(3x5)2=28×7

9x230x+25=196

9x230x+25196=0

9x230x171=0

3x210x57=0 (dividing by 3)

3x219x+9x57=0

x(3 x-19)+3(3 x-19)=0

(3 x-19)(x+3)=0

Either 3x-19=0 then 3x=19

x=193 or x+3=0, then x=-3

Hence x=193,3


(ii)

3(y26)=y(y+7)3

3(y26)=y(y+7)3

3(y26)=y2+7y3

3y218=y2+7y3

3y2y27y18+3=0

2y27y15=0

2y210y+3y15=0

2y(y-5)+3(y-5)=0

(y-5)(2 y+3)=0

Either y-5=0, then y=5

or 2y+3=0 then 2y=-3 y=32

Hence y=32,5


Question 9

x² – 4x – 12 = 0,when x∈N

Sol :

x² – 4x – 12 = 0

⇒ x² – 6x + 2x – 12 = 0

⇒ x (x – 6) + 2 (x – 6) = 0

⇒ (x – 6) (x + 2) = 0

Either x – 6 = 0, then x = 6

or x + 2 = 0, then x = -2

But -2 is not a natural number

∴ x = 6


Question 10

2x² – 8x – 24 = 0 when x∈I

Sol :

2x² – 8x – 24 = 0

⇒ x² – 4x – 12 = 0 (Dividing by 2)

⇒ x² – 6x + 2x – 12 = 0

⇒ x (x – 6) + 2 (x – 6) = 0

⇒ (x – 6) (x + 2) = 0

Either x – 6 = 0, then, x = 6

or x + 2 = 0, then x = – 2

Hence x = 6, – 2


Question 11

5x² – 8x – 4 = 0 when x∈Q

Sol :

5x² – 8x – 4 = 0

∵ 5 × ( – 4) = – 20

-20 = – 10 + 2

-8 = – 10 + 2

5x210x+2x4=0
5 x(x-2)+2(x-2)=0
(x-2)(5 x+2)=0 [zero product rule]

Either x-2=0, then x=2

5x+2=0 then 5x=-2

x=25

,x=2,25


Question 12

2x² – 9x + 10 = 0,when

(i)x∈N

(ii)x∈Q

Sol :

2x² – 9x + 10 = 0

⇒ 2x² – 4x – 5x + 10 = 0

⇒ 2x(x – 2) – 5(x – 2) = 0

(x-2)(2 x-5)=0
Either x-2=0 then x=2
or 2x-5=0 then 2 x=5 x=52

(i) when x∈N , then x=2

(ii) when x∈Q, then x=2,52


Question 13

(i) a²x² + 2ax + 1 = 0, a≠0

(ii) x² – (p + q)x + pq = 0

Sol :

(i)

 a²x² + 2ax + 1 = 0

⇒ a²x² + ax + ax + 1 = 0

ax(ax+1)+1(ax+1)=0
(ax+1)(ax+1)=0
(ax+1)2=0
∴ax+1=0 or ax=-1
x=1a

Hence x=1a,1a


(ii)

x2(p+q)x+pq=0

x2(p+q)x+pq=0

x2pxqx+pq=0

x(x-p)-q(x-p)=0

(x-p)(x-q)=0

Either x-p=0 then x=p

x-q=0 then x=q

Hence x=p, q


Question 14

a²x² + (a² + b²)x + b² = 0, a≠0

Sol :

a²x² + (a² + b²)x + b² = 0

⇒ a²x(x + 1) + b²(x + 1) = 0

(x+1)(a2x+b2)=0

(x+1)=0, then x=-1

a2x+b2=0, then a2x=b2x=b2a2

Hence x=1,b2a2


Question 15

(i) √3x² + 10x + 7√3 = 0

(ii) 4√3x² + 5x – 2√3 = 0

Sol :

(i)

√3x² + 10x + 7√3 = 0

[ ∵ √3 x 7√3 = 7 x 3 = 21]

⇒ √3x(x + √3) + 7(x + √3) = 0

⇒ (x+3)(3x+7)=0

Either x+3=0, then x=3

or 3x+7=0, then 3x=7

x=73

x=7×33×3

=733

Hence x=3,733


(ii)

43x2+5x23=0

43x2+5x23=0

{43×(23)=8×(3)=24}

43x2+8x3x23=0

4x(3x+2)3(3x+2)=0

(3x+2)(4x3)=0

Either 3x+2=0, then 3x=2

x=23

x=2×33×3=233

4x3=0, then 4x=3

x=34

Hence x=233,34


Question 16

(i) x² – (1 + √2)x + √2 = 0

(ii) x+1x=2120

Sol :

(i) 

x² – (1 + √2)x + √2 = 0

⇒ x² – x – √2x + √2 = 0

x(x1)2(x1)=0
(x1)(x2)=0
Either x1=0, then x=1
or x2=0, then x=2
Hence x=1,2

(ii)

x+1x=2120

x2+1x=4120

20x2+20=41x

20x216x25x+20=0

4 x(5 x-4)-5(5 x-4)=0

(5 x-4)(4 x-5)=0

Either 5x-4=0, then 5x=4x=45

or 4x-5=0, then 4x=5 x=54

Hence x=45,54 Ans.


Question 17

(i) 2x25x+2=0,x0

(ii) x215x310=0

Sol :

(i)

2x252+2=0,x0

⇒ 2 – 5x + 2x² = 0

2x25x+2=0 

{2×2=44=4×(1)5=41}

2x24xx+2=0

⇒2x(x-2)-1(x-2)=0

⇒(x-2)(2 x-1)=0

Either x-2=0, then x=2

or 2 x-1=0, then 2 x=1 x=12

x=2,12

(ii)

x215x310=0

x25x150=0 {150=15×105=15+10}

x215x+10x150=0

⇒x(x-15)+10(x-15)=0

⇒(x-15)(x+10)=0

Either x-15=0, then x=15

⇒or x+10=0, then x=-10

⇒x=15,-10


Question 18

(i) 3x8x=2

(ii) x+2x+3=2x33x7

Sol :

(i)

3x8x=2

3x28x=2

3x28=2x

3x22x8=0

3x26x+4x8=0

⇒3x(x-2)+4(x-2)=0

⇒(x-2)(3 x+4)=0

Either x-2=0, then x=2

⇒or  x+4=0,then3x=4\Rightarrow x=\frac{-4}{3}$

Hence x=2,43 Ans.

(ii)

x+2x+3=2x33x7

⇒(x+2)(3 x-7)=(2 x-3)(x+3)

3x27x+6x14=2x2+6x3x9

3x2x14=2x2+3x9

3x2x142x23x+9=0

x24x5=0

x25x+x5=0

⇒x(x-5)+1(x-5)=0

⇒(x-5)(x+1)=0

Either x-5=0, then x=5

⇒or x+1=0, then x=-1

Hence x=5,-1


Question 19

(i) 8x+332x=2

(ii) xx1+x1x=212

Sol :

(i)

8x+332x=2

168x3x9(x+3)(2x)=2

11x+72xx2+63x=2

11x+7=4x2x2+126x

11x+74x+2x212+6x=0

2x29x5=0

2x210x+x5=0

⇒2x(x-5)+1(x-5)=0

⇒(x-5)(2 x+1)=0

Either x-5=0,thenx=5$

or 2 x+1=0, then 2 x=-1 

x=12

Hence x=5,12 Ans.

(ii)

xx1+x1x=212

xx1+x1x=212

xx1+x1x=52

x2+x22x+1x(x1)=52

2x22x+1x2x=52

4x24x+2=5x25x

4x24x+25x2+5x=0

x2+x+2=0x2x2=0

x22x+x2=0

⇒x(x-2)+1(x-2)=0

⇒(x-2)(x+1)=0

Either x-2=0, then x=2

or x+1=0, then x=-1

Hence x=2,-1


Question 20

(i) xx+1+x+1x=3415

(ii) x+1x1+x2x+2=3

Sol :

(i)

xx+1+x+1x=3415

x2+x2+2x+1x(x+1)=3415

2x2+2x+1x2+x=3415

30x2+30x+15=34x2+34x

30x2+30x+1534x234x=0

4x24x+15=0

4x2+4x15=0

4x2+10x6x15=0

⇒2x(2 x+5)-3(2x+5)=0

⇒(2x+5)(2 x-3)=0

Either 2x+5=0, then 2x=-5

 x=52

or 2x-3=0, then 2x=3x=32

Hence x=52,32 Ans.

(ii)

x+1x1+x2x+2=3

x+1x1+x2x+2=3

(x+1)(x+2)+(x2)(x1)(x1)(x+2)=3

x2+2x+x+2+x2x2x+2x2+2xx2

x2+3x+2+x23x+2x2+x2=31

2x2+4=3x2+3x6

2x2+43x23x+6=0

x23x+10=0

x2+3x10=0

x2+5x2x10=0

⇒x(x+5)-2(x+5)=0

⇒(x+5)(x-2)=0

 Either x+5=0, then x=-5

or x-2=0, then x=2

Hence x=-5,2 Ans.


Question 21

(i) 1x31x+5=16

(ii) x3x+3+x+3x3=212

Sol :

(i)

1x31x+5=16

x+5x+3(x3)(x+5)=168x2+2x15=16

x2+2x15=48

x2+2x1548=0

x2+2x63=0x2+9x7x63=0

⇒x(x+9)-7(x+9)=0

⇒(x+9)(x-7)=0

Either x+9=0, then x=-9

or x-7=0, then x=7

Hence x=-9,7

(ii)

x3x+3+x+3x3=212

x3x+3+x+3x3=212

Put x3x+3=a, then x+3x3=1a

a+1a=52

2a2+2=5a

2a25a+2=02a2a4a+2=0

⇒a(2a-1)-2(2a-1)=0

⇒2a-1)(a-2)=0

Either 2a-1=0, then a=12

or a-2=0, then a=2


(a) When a=12, then

x3x+3=12

⇒2x-6=x+3

2x-x=3+6

x=9

(b)When a=2, then

x3x+3=21

2x+6=x-3

2x-x=-3-6

x=-9

∴x=9,-9


Question 22

(i) aax1+bbx1=a+b,a+b0,ab0

(ii) 12a+b+2x=12a+1b+12x

Sol :

(i) aax1+bbx1=a+b

(aax1b)+(bbx1a)=0

aabx+b(ax1)+babx+a(bx1)=0

(a+babx)[1ax1+1bx1]=0

(a+babx)[bx1+ax1(ax1)(bx1)]=0

(a+babx)(ax+bx2)(ax1)(bx1)=0

(a+babx)(ax+bx2)=0

Either a+babx=0, then a+b=abx

x=a+bab

or ax+bx-2=0, then x(a+b)=2

x=2a+b

Hence x=a+bab,2a+b Ans.


(ii) 12a+b+2x=12a+1b+12x

12a+b+2x12x=12a+1b

2x(2a+b+2x)(2a+b+2x)2x=b+2a2ab

(2a+b)(2a+b+2x)2x=(2a+b)2ab

1(2a+b+2x)2x=12ab

⇒-2ab=(2a+b+2x)2x

4ax+2xb+4x2=2ab

4x2+2bx+4ax+2ab=0

⇒2 x(2 x+b)+2a(2 x+b)=0

⇒(2 x+2 a)(2 x+b)=0

⇒2x+2a=0 or 2x+b=0

x=-a or x=b2

Hence, the roots of the given equation are

-a and b2. Ans.


Question 23

1x+6+1x10=3x4

Sol :

1x+6+1x10=3x4

x10+x+6(x+6)(x10)=3x4

2x28x4x+16=3(x24x60)

2x28x4x+16=3x212x180

2x212x+163x2+12x+180=0

x2+196=0

x2196=0

(x)2(14)2=0

⇒(x+14)(x-14)=0

Either x+14=0, then x=-14

or x-14=0, then x=14

∴ x=14,-14 


Question 24

(i) 3x+4=x

(ii) x(x7)=32

Sol :

(i) 3x+4=x

Squaring on both sides

3x+4=x2
x23x4=0
x24x+x4=0
⇒x(x-4)+1(x-4)=0
⇒(x-4)(x+1)=0
Either x-4=0, then x=4 or x+1=0, then x=-1
∴ x=4,-1
Check (i) If x=4, then L.H.S. =3x+4=3×4+4
=12+4=16=4
R.H.S. =x=4 
∴ L.H.S=R.H.S
Hence x=4 is its root
(ii) If x=-1, then

L.H.S. =3×(1)+4=3+4=1=1

R.H.S.=x=-1

∵ L.H.S.≠R.H.S

∴ x=-1 is not its root, Hence x=4


(ii)

x(x7)=32

x(x7)=32, 

Squaring both sides, 

x(x-7)=9×2

x27x=18

x27x18=0

x29x+2x18=0

⇒x(x-9)+2(x-9)=0

⇒(x-9)(x+2)=0

Either x-9=0, then x=9 or  x+2=0, then x=-2

∴ x=9,-2

Check :

(i) If x=9, then L.H.S. =x(x7)=9(97)

=9×2=18=9×2=32=R.H.S

x=9 is a root

(ii) If x=-2 then

L.H.S. =x(x7)=2(27)

=2×9=18=9×2=32=R.H.S

∴x=-2 is also its root Hence x=9,-2


Question 25

Use the substitution y = 3x + 1 to solve for x : 5(3x + 1 )² + 6(3x + 1) – 8 = 0

Sol :

y = 3x + 1

Now, 5(3x + 1)² + 6(3x + 1) – 8 = 0

Substituting the value of  3x+1, we get

5y2+6y8=0

5y2+10y4y8=0

{5×(8)=4040=10×(4)6=104}

⇒5y(y+2)-4(y+2)=0

⇒(y+2)(5y-4)=0

Either y+2=0, then y=-2

or 5y-4=0 then 5y=4 y=45

(i) If y=-2, then 3x+1=-2 3x=21

⇒3x=-3

x=33=1

(ii)

If y=45, then 3x+1=45

3x=451=15

Hence x=1,115


Question 26

Find the values of x if p + 1 =0 and x² + px – 6 = 0

Sol :

p + 1 = 0, then p = – 1

Substituting the value of p in the given quadratic equation

x² + ( – 1)x – 6 = 0

⇒ x² – x – 6 = 0

⇒ x² – 3x + 2x – 6 = 0

⇒ x (x – 3) + 2 (x – 3) = 0

⇒ (x – 3) (x + 2) = 0

Either x – 3 = 0, then x = 3

or x + 2 = 0, then x = – 2

Hence x = 3, -2


Question 27

Find the values of x if p + 7 = 0, q – 12 = 0 and x² + px + q = 0,

Sol :

p + 7 = 0, then p = – 7

and q – 12 = 0, then q = 12

Substituting the values of p and q in the given quadratic equation,

x² – 7x + 12 = 0

⇒ x² – 3x – 4x + 12 = 0

⇒ x (x – 3) – 4 (x – 3) = 0

⇒ (x – 3) (x – 4) = 0

Either x – 3 = 0, then x = 3

or x – 4 = 0, then x = 4

Hence x = 3, 4


Question 29

If x = p is a solution of the equation x(2x + 5) = 3, then find the value of p.

Sol :

Given, x = p and x(2x + 5) = 3

Substituting the value of p, we get

p(2p + 5) = 3

⇒ 2p² + 5p – 3 = 0

⇒ 2p² + 6p – p – 3 = 0

{2×(3)=66=6×(1)5=61}

⇒ 2p(p+3)-1(p+3)=9

⇒ (p+3)(2 p-1)=0

Either p+3=0 then p=-3

or 2p-1=0 then 2p=1

p=12

p=12,3

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2