ML Aggarwal Solution Class 10 Chapter 5 Quadratic Equations in One Variable Exercise 5.3

 Exercise 5.3

Question 1

(i) 2x² – 7x + 6 = 0

(ii) 2x² – 6x + 3 = 0

Sol :

(i) 2x² – 7x + 6 = 0

Here a = 2, b = -7, c = 6

D=b24ac=(7)24×2×6

=49-48=1

x=b±b24ac2a=b±D2a

=(7)±12×2=7±14

x1=7+14=84=2 and x2=714=64=32

x=2,32

(ii) 2x26x+3=0

Here a=2, b=-6, c=3

then D=b24ac=(6)24×2×3

=36-24=12

Now x=b±D2a=(6)±122×2=6±234

x1=6+234=2(3+3)4=3+32

x2=6234=2(33)4=332

Hence x=3+32,332


Question 2

(i) x² + 7x – 7 = 0

(ii) (2x + 3)(3x – 2) + 2 = 0

Sol :

(i) x² + 7x – 7 = 0

Here a = 1, b = 7, c = -7

=49+28=77

\because x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-7 \pm \sqrt{77}}{2 \times 1}=\frac{-7 \pm \sqrt{77}}{2}

\therefore x_{1}=\frac{-7+\sqrt{77}}{2} and x_{2}=\frac{-7-\sqrt{77}}{2}

Hence x=\frac{-7+\sqrt{77}}{2}, \frac{-7-\sqrt{77}}{2}


(ii)
(2 x+3)(3 x-2)+2=0
6x^{2}-4 x+9x-6+2=0
6 x^{2}+5 x-4=0
Here a=6, b=5, c=-4
\mathrm{D}=b^{2}-4 a c=(5)^{2}-4 \times 6 \times(-4)
=25+96=121

\because x=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-5 \pm \sqrt{121}}{2 \times 6}=\frac{-5 \pm 11}{12}
\therefore x_{1}=\frac{-5+11}{12}=\frac{6}{12}=\frac{1}{2}
x_{2}=\frac{-5-11}{12}=\frac{-16}{12}=\frac{-4}{3}
Hence x=\frac{1}{2}, \frac{-4}{3} Ans.

Question 3

(i)256x² – 32x + 1 = 0

(ii) 25x² + 30x + 7 = 0

Sol :

(i) 256x² – 32x + 1 = 0

Here a = 256, b = -32, c = 1

\mathrm{D}=b^{2}-4 a c=(-32)^{2}-4 \times 256 \times 1
=1024-1024=0
\because x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-32) \pm \sqrt{0}}{2 \times 256}=\frac{32}{512}=\frac{1}{16}

x_{1}=\frac{1}{16}, x_{2}=\frac{1}{16}

Hence x=\frac{1}{16}, \frac{1}{16} Ans.

(ii) 25 x^{2}+30 x+7=0
Here a=25, b=30, c=7

D=b^{2}-4 a c=(30)^{2}-4 \times 25 \times 7
=900-700=200

\because x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-30 \pm \sqrt{200}}{2 \times 25}

=\frac{-30 \pm \sqrt{100 \times 2}}{50}=\frac{-30 \pm 10 \sqrt{2}}{50}=\frac{-3 \pm \sqrt{2}}{5}
\therefore x_{1}=\frac{-3+\sqrt{2}}{5} and x_{2}=\frac{-3-\sqrt{2}}{5}

Hence x=\frac{-3+\sqrt{2}}{5}, \frac{-3-\sqrt{2}}{5}

Question 4

(i) 2x² + √5x – 5 = 0
(ii) √3x² + 10x – 8√3 = 0
Sol :
(i) 2x² + √5x – 5 = 0
Here a = 2, b = √5, c = -5

D=b^{2}-4 a c=(\sqrt{5})^{2}-4 \times 2 \times(-5)
=5+40=45
\because x=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-\sqrt{5} \pm \sqrt{45}}{2 \times 2}
=\frac{-\sqrt{5} \pm \sqrt{9 \times 5}}{4}=\frac{-\sqrt{5} \pm 3 \sqrt{5}}{4}
\therefore x_{1}=\frac{-\sqrt{5}+3 \sqrt{5}}{4}=\frac{2 \sqrt{5}}{4}=\frac{\sqrt{5}}{2}
x_{2}=\frac{-\sqrt{5}-3 \sqrt{5}}{4}=\frac{-4 \sqrt{5}}{4}=-\sqrt{5}
Hence x=\frac{\sqrt{5}}{2},-\sqrt{5} Ans.

(ii) \sqrt{3} x^{2}+10 x-8 \sqrt{3}=0
Here a=\sqrt{3}, b=10, c=-8 \sqrt{3}
D=b^{2}-4 a c=(10)^{2}-4 \times \sqrt{3} \times(-8 \sqrt{3})
=100+96=196

\because x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-10 \pm \sqrt{196}}{2 \times \sqrt{3}}=\frac{-10 \pm 14}{2 \sqrt{3}}
\therefore x_{1}=\frac{-10+14}{2 \sqrt{3}}=\frac{4}{2 \sqrt{3}}=\frac{2 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{2 \sqrt{3}}{3}
x_{2}=\frac{-10-14}{2 \sqrt{3}}=\frac{-24}{2 \sqrt{3}}=\frac{-12 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}
=\frac{-12 \sqrt{3}}{3}=-4 \sqrt{3}
Hence x=\frac{2 \sqrt{3}}{3},-4 \sqrt{3} Ans.

Question 5

(i) \frac{x-2}{x+2}+\frac{x+2}{x-2}=4
(ii) \frac{x+1}{x+3}=\frac{3 x+2}{2 x+3}
Sol :
(i) \frac{x-2}{x+2}+\frac{x+2}{x-2}=4
\Rightarrow \frac{(x-2)^{2}+(x+2)^{2}}{(x+2)(x-2)}=4
\Rightarrow \frac{x^{2}-4 x+4+x^{2}+4 x+4}{x^{2}-4}=4
\Rightarrow 2 x^{2}+8=4 x^{2}-16
\Rightarrow 2 x^{2}+8-4 x^{2}+16=0
\Rightarrow-2 x^{2}+24=0
\Rightarrow \quad x^{2}-12=0
Here a=1, b=0, c=-12
\mathrm{D}=b^{2}-4 a c=(0)^{2}-4 \times 1(-12)
=0+48=48
\because x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{0 \pm \sqrt{48}}{2 \times 1}=\frac{\pm \sqrt{48}}{2}
=\frac{\pm \sqrt{16 \times 3}}{2}=\pm \frac{4 \sqrt{3}}{2}=\pm 2 \sqrt{3}
Hence roots are -2 \sqrt{3},-2 \sqrt{3} Ans.

(ii) \frac{x+1}{x+3}=\frac{3 x+2}{2 x+3}
(x+1)(2 x+3)=(3 x+2)(x+3)
\Rightarrow 2 x^{2}+3 x+2 x+3
=3 x^{2}+9 x+2 x+6
\Rightarrow \quad 2 x^{2}+5 x+3-3 x^{2}-11 x-6=0
\Rightarrow \quad-x^{2}-6 x-3=0
\Rightarrow x^{2}+6 x+3=0
Here a=1, b=6, c=3
\mathrm{D}=b^{2}-4 a c=(6)^{2}-4 \times 1 \times 3
=36-12=24
\because x=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}
=\frac{-6 \pm \sqrt{24}}{2 \times 1}
\therefore x_{1}=-3+\sqrt{6}, x_{2}=-3-\sqrt{6}
Hence x=-3+\sqrt{6},-3-\sqrt{6} Ans.

Question 6

(i) a (x² + 1) = (a² + 1) x , a ≠ 0
(ii) 4x² – 4ax + (a² – b²) = 0
Sol :
(i) a (x² + 1) = (a² + 1) x
ax² – (a² + 1)x + a = 0
Here a=a, b=-\left(a^{2}+1\right), c=a
\mathrm{D}=b^{2}-4 a c=\left[-\left(a^{2}+1\right)\right]^{2}-4 \times a \times a
=a^{4}+2 a^{2}+1-4 a^{2}=a^{4}-2 a^{2}+1
=\left(a^{2}-1\right)^{2}
\because x=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}
=\frac{\left(a^{2}+1\right) \pm \sqrt{\left(a^{2}-1\right)^{2}}}{2 \times a}=\frac{\left(a^{2}+1\right) \pm\left(a^{2}-1\right)}{2 a}
\therefore x_{1}=\frac{a^{2}+1+a^{2}-1}{2 a}=\frac{2 a^{2}}{2 a}=a
x_{2}=\frac{a^{2}+1-a^{2}+1}{2 a}=\frac{2}{2 a}=\frac{1}{a}
Hence x=a, \frac{1}{a}. Ans.

(ii) 4 x^{2}-4 a x+\left(a^{2}-b^{2}\right)=0
Here a=4, b=-4 a, c=a^{2}-b^{2}
D=b^{2}-4 a c=(-4 a)^{2}-4 \times 4\left(a^{2}-b^{2}\right)
=16 a^{2}-16\left(a^{2}-b^{2}\right)
=16 a^{2}-16 a^{2}+16 b^{2}
D=16 b^{2}
\therefore x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-4 a) \pm \sqrt{16 b^{2}}}{2 \times 4}
=\frac{4 a \pm 4 b}{8}=\frac{a \pm b}{2}
\therefore x_{1}=\frac{a+b}{2}, x_{2}=\frac{a-b}{2}
Hence x=\frac{a+b}{2}, \frac{a-b}{2} Ans.

Question 7

(i) x-\frac{1}{x}=3, x \neq 0

(ii) \frac{1}{x}+\frac{1}{x-2}=3, x \neq 0,2

Sol :

(i) x-\frac{1}{x}=3

x^{2}-1=3 x

\Rightarrow x^{2}-3 x-1=0

Here a=1, b=-3, c=-1

\therefore b^{2}-4 a c=(-3)^{2}-4 \times 1 \times(-1)

=9+4=13

x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}

\therefore  x=\frac{3+\sqrt{13}}{2} and \frac{3-\sqrt{13}}{2}


(ii) \frac{1}{x}+\frac{1}{x-2}=3

\quad \frac{x-2+x}{x(x-2)}=3 \Rightarrow \frac{2 x-2}{x^{2}-2 x}=3

\Rightarrow 3 x^{2}-6 x=2 x-2 \Rightarrow 3 x^{2}-6 x-2 x+2=0

\Rightarrow 3 x^{2}-8 x+2=0

Here a=3, b=-8, c=2

b^{2}-4 a c=(-8)^{2}-4 \times 3 \times 2

=64-24=40

x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}

=\frac{-(-8) \pm \sqrt{40}}{2 \times 3}=\frac{8 \pm 2 \sqrt{10}}{6}=\frac{4 \pm \sqrt{10}}{3}

\therefore x=\frac{4+\sqrt{10}}{3} and \frac{4-\sqrt{10}}{3}


Question 8

\frac{1}{x-2}+\frac{1}{x-3}+\frac{1}{x-4}=0

Sol :

\frac{1}{x-2}+\frac{1}{x-3}+\frac{1}{x-4}=0

\Rightarrow \frac{1}{x-2}+\frac{1}{x-3}=-\frac{1}{x-4}

\Rightarrow \frac{x-3+x-2}{(x-2)(x-3)}=-\frac{1}{x-4}

\Rightarrow \frac{2 x-5}{x^{2}-5 x+6}=\frac{-1}{x-4}

\quad(2 x-5)(x-4)=-1\left(x^{2}-5 x+6\right)

\Rightarrow 2 x^{2}-8 x-5 x+20=-x^{2}+5 x-6

\Rightarrow 2 x^{2}-8 x-5 x+20+x^{2}-5 x+6=0

\Rightarrow 3 x^{2}-18 x+26=0

Here, a=3, b=-18, c=26

\therefore x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}

=\frac{-(-18) \pm \sqrt{(-18)^{2}-4 \times 3 \times 26}}{2 \times 3}

=\frac{18 \pm \sqrt{324-312}}{6}

=\frac{18 \pm \sqrt{12}}{6}=\frac{18 \pm 2 \sqrt{3}}{6}

=\frac{9 \pm \sqrt{3}}{3} (dividing by 2)

\therefore x=\frac{9+\sqrt{3}}{3}, \frac{9-\sqrt{3}}{3}

=3+\frac{\sqrt{3}}{3}, 3-\frac{\sqrt{3}}{3}

=3+\frac{1}{\sqrt{3}}, 3-\frac{1}{\sqrt{3}}


Question 9

Solve : x: 2\left(\frac{2 x-1}{x+3}\right)-3\left(\frac{x+3}{2 x-1}\right)=5, x \neq-3, \frac{1}{2}

Sol :

x: 2\left(\frac{2 x-1}{x+3}\right)-3\left(\frac{x+3}{2 x-1}\right)=5

Let \frac{2 x-1}{x+3}=y then \frac{x+3}{2 x-1}=\frac{1}{y}

\therefore 2 y-\frac{3}{y}=5

2 y^{2}-3=5 y

\Rightarrow 2 y^{2}-5 y-3=0

Here, a=2, b=-5, c=-3

b^{2}-4 a c=(-5)^{2}-4 \times 2 \times(-3)

=25+24=49

Now, y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}

=\frac{-(-5) \pm \sqrt{49}}{2 \times 2}=\frac{5 \pm 7}{4}

y=\frac{5+7}{4}=\frac{12}{4}=3

or y=\frac{5-7}{4}=\frac{-2}{4}=\frac{-1}{2}

\therefore y=3, \frac{-1}{2}


When y=3, then \frac{2 x-1}{x+3}=3

\Rightarrow 3 x+9=2 x-1

\Rightarrow 3 x-2 x=-1-9 \Rightarrow x=-10

When y=\frac{-1}{2}, then

or \frac{2 x-1}{x+3}=\frac{-1}{2}

4x-2=-x-3

4 x+x=-3+2 \Rightarrow 5 x=-1

\quad x=\frac{-1}{5}

\therefore x=-10, \frac{-1}{5}


Question 10

Solve the following equation by using quadratic equations for x and give your

(i) x² – 5x – 10 = 0

(ii) 5x(x + 2) = 3

Sol :

(i) x² – 5x – 10 = 0

On comparing with, ax² + bx + c = 0

a=1, b=-5, c=-10

\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}

x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(-10)}}{2 \times 1}

\therefore x=\frac{5 \pm \sqrt{25+40}}{2}

\Rightarrow x=\frac{5 \pm \sqrt{65}}{2}=\frac{5 \pm 8.06}{2}

Either x=\frac{5+8.06}{2}=\frac{13.06}{2}=6.53

or x=\frac{5-8.06}{2}=\frac{-3.06}{2}=-1.53

∴ x=6.53, x=-1.53


(ii)

5x(x+2)=3

5x(x+2)=3

5 x^{2}+10 x=3

5 x^{2}+10 x-3=0

Here a=5, b=10, c=-3

\mathrm{D}=b^{2}-4 a c=(10)^{2}-4 \times 5 \times(-3)

=100+60=160

\therefore x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-10 \pm \sqrt{160}}{2 \times 5}

=\frac{-10 \pm \sqrt{16 \times 10}}{10}=\frac{-10 \pm 4 \sqrt{10}}{10}

=\frac{-10 \pm 4(3.162)}{10}=\frac{-10 \pm 12.648}{10}

\therefore x_{1}=\frac{-10+12.648}{10}=\frac{2.648}{10}=0.2648

=0.265

x_{2}=\frac{-10-12.648}{10}=\frac{-22.648}{10}=-2.2648

\therefore  x=0.26,-2.26 Ans.


Question 11

Solve the following equations by using quadratic formula and give your answer correct to 2 decimal places 

(i) 4x² – 5x – 3 = 0

(ii) 2 x-\frac{1}{x}=1

Sol :

(i) Given equation 4x² – 5x – 3 = 0

Comparing with ax² + bx + c = 0, we have

a=4, b=-5, c=-3
\therefore x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}

=\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 4 \times(-3)}}{2 \times 4}

=\frac{5 \pm \sqrt{25+48}}{8}=\frac{5 \pm \sqrt{73}}{8}=\frac{5 \pm 8.544}{8}

=\frac{5+8.544}{8} or \frac{5-8.544}{8}

=\frac{13.544}{8} or \frac{-3.544}{8}

=1.693 or -0.443

=1.69 or -0.44 (correct to 2 decimal places)


(ii)

2 x-\frac{1}{x}=7 \Rightarrow 2 x^{2}-1=7 x

\Rightarrow 2 x^{2}-7 x-1=0...(i)

Comparing (i) with a x^{2}+b x+c, we get,

a=2, b=-7, c=-1

\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}

\Rightarrow x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(2) \times(-1)}}{2 \times 2}

\Rightarrow \frac{7 \pm \sqrt{49+8}}{4}=\frac{7 \pm \sqrt{57}}{4}

\Rightarrow x=\frac{7+\sqrt{57}}{4} or x=\frac{7-\sqrt{57}}{4}

\Rightarrow x=\frac{7+7.55}{4} or x=\frac{7-7.55}{4}

\Rightarrow x=\frac{14.55}{4} or x=\frac{-0.55}{4}

\Rightarrow x=3.64 or x=-0.14 Ans.


Question 12

Solve the following equation: x-\frac{18}{x}=6. Give your answer correct to two x significant figures. (2011)

Sol :

x-\frac{18}{x}=6

⇒ x² – 6x – 18 = 0
a = 1, b = -6, c = -18

x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{6 \pm \sqrt{36+72}}{2}

=\frac{6 \pm \sqrt{108}}{2}=\frac{6 \pm 6 \sqrt{3}}{2}= or \frac{6(1-1.73)}{2}

=3×2.73

or 3×-0.73=8.19 or -2.19


Question 13

Solve the equation 5x² – 3x – 4 = 0 and give your answer correct to 3 significant figures:

Sol :

We have 5x² – 3x – 4 = 0

Here a = 5, b = – 3, c = – 4

x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{3 \pm \sqrt{9+4 \times 5 \times 4}}{2 \times 5}=\frac{3 \pm \sqrt{89}}{10}

x=\frac{3+9.43}{10} or x=\frac{3-9.43}{10}

\Rightarrow x=\frac{12.43}{10}, or x=\frac{-6.43}{10}

⇒x=1.24 or x=-0.643

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2