ML Aggarwal Solution Class 10 Chapter 5 Quadratic Equations in One Variable Exercise 5.3
Exercise 5.3
Question 1
(i) 2x² – 7x + 6 = 0
(ii) 2x² – 6x + 3 = 0
Sol :
(i) 2x² – 7x + 6 = 0
Here a = 2, b = -7, c = 6
=49-48=1
∴x=−b±√b2−4ac2a=−b±√D2a
=−(−7)±√12×2=7±14
∴x1=7+14=84=2 and x2=7−14=64=32
∴x=2,32
(ii) 2x2−6x+3=0
Here a=2, b=-6, c=3
then D=b2−4ac=(−6)2−4×2×3
=36-24=12
Now x=−b±√D2a=−(−6)±√122×2=6±2√34
∴x1=6+2√34=2(3+√3)4=3+√32
x2=6−2√34=2(3−√3)4=3−√32
Hence x=3+√32,3−√32
Question 2
(i) x² + 7x – 7 = 0
(ii) (2x + 3)(3x – 2) + 2 = 0
Sol :
(i) x² + 7x – 7 = 0
Here a = 1, b = 7, c = -7
Question 3
(i)256x² – 32x + 1 = 0
(ii) 25x² + 30x + 7 = 0
Sol :
(i) 256x² – 32x + 1 = 0
Here a = 256, b = -32, c = 1
Question 4
Question 5
Question 6
Question 7
(i) x−1x=3,x≠0
(ii) 1x+1x−2=3,x≠0,2
Sol :
(i) x−1x=3
x2−1=3x
⇒x2−3x−1=0
Here a=1, b=-3, c=-1
∴b2−4ac=(−3)2−4×1×(−1)
=9+4=13
x=−b±√b2−4ac2a
∴x=3+√132 and 3−√132
(ii) 1x+1x−2=3
x−2+xx(x−2)=3⇒2x−2x2−2x=3
⇒3x2−6x=2x−2⇒3x2−6x−2x+2=0
⇒3x2−8x+2=0
Here a=3, b=-8, c=2
b2−4ac=(−8)2−4×3×2
=64-24=40
x=−b±√b2−4ac2a
=−(−8)±√402×3=8±2√106=4±√103
∴x=4+√103 and 4−√103
Question 8
1x−2+1x−3+1x−4=0
Sol :
1x−2+1x−3+1x−4=0
⇒1x−2+1x−3=−1x−4
⇒x−3+x−2(x−2)(x−3)=−1x−4
⇒2x−5x2−5x+6=−1x−4
(2x−5)(x−4)=−1(x2−5x+6)
⇒2x2−8x−5x+20=−x2+5x−6
⇒2x2−8x−5x+20+x2−5x+6=0
⇒3x2−18x+26=0
Here, a=3, b=-18, c=26
∴x=−b±√b2−4ac2a
=−(−18)±√(−18)2−4×3×262×3
=18±√324−3126
=18±√126=18±2√36
=9±√33 (dividing by 2)
∴x=9+√33,9−√33
=3+√33,3−√33
=3+1√3,3−1√3
Question 9
Solve : x:2(2x−1x+3)−3(x+32x−1)=5,x≠−3,12
Sol :
x:2(2x−1x+3)−3(x+32x−1)=5
Let 2x−1x+3=y then x+32x−1=1y
∴2y−3y=5
2y2−3=5y
⇒2y2−5y−3=0
Here, a=2, b=-5, c=-3
b2−4ac=(−5)2−4×2×(−3)
=25+24=49
Now, y=−b±√b2−4ac2a
=−(−5)±√492×2=5±74
y=5+74=124=3
or y=5−74=−24=−12
∴y=3,−12
When y=3, then 2x−1x+3=3
⇒3x+9=2x−1
⇒3x−2x=−1−9⇒x=−10
When y=−12, then
or 2x−1x+3=−12
4x-2=-x-3
4x+x=−3+2⇒5x=−1
x=−15
∴x=−10,−15
Question 10
Solve the following equation by using quadratic equations for x and give your
(i) x² – 5x – 10 = 0
(ii) 5x(x + 2) = 3
Sol :
(i) x² – 5x – 10 = 0
On comparing with, ax² + bx + c = 0
∵x=−b±√b2−4ac2a
x=−(−5)±√(−5)2−4(1)(−10)2×1
∴x=5±√25+402
⇒x=5±√652=5±8.062
Either x=5+8.062=13.062=6.53
or x=5−8.062=−3.062=−1.53
∴ x=6.53, x=-1.53
(ii)
5x(x+2)=3
5x(x+2)=3
5x2+10x=3
5x2+10x−3=0
Here a=5, b=10, c=-3
D=b2−4ac=(10)2−4×5×(−3)
=100+60=160
∴x=−b±√b2−4ac2a=−10±√1602×5
=−10±√16×1010=−10±4√1010
=−10±4(3.162)10=−10±12.64810
∴x1=−10+12.64810=2.64810=0.2648
=0.265
x2=−10−12.64810=−22.64810=−2.2648
∴x=0.26,−2.26 Ans.
Question 11
Solve the following equations by using quadratic formula and give your answer correct to 2 decimal places
(i) 4x² – 5x – 3 = 0
Sol :
(i) Given equation 4x² – 5x – 3 = 0
Comparing with ax² + bx + c = 0, we have
=−(−5)±√(−5)2−4×4×(−3)2×4
=5±√25+488=5±√738=5±8.5448
=5+8.5448 or 5−8.5448
=13.5448 or −3.5448
=1.693 or -0.443
=1.69 or -0.44 (correct to 2 decimal places)
(ii)
2x−1x=7⇒2x2−1=7x
⇒2x2−7x−1=0...(i)
Comparing (i) with ax2+bx+c, we get,
a=2, b=-7, c=-1
∵x=−b±√b2−4ac2a
⇒x=−(−7)±√(−7)2−4(2)×(−1)2×2
⇒7±√49+84=7±√574
⇒x=7+√574 or x=7−√574
⇒x=7+7.554 or x=7−7.554
⇒x=14.554 or x=−0.554
⇒x=3.64 or x=−0.14 Ans.
Question 12
Solve the following equation: x−18x=6. Give your answer correct to two x significant figures. (2011)
Sol :
x−18x=6
=3×2.73
or 3×-0.73=8.19 or -2.19
Question 13
Solve the equation 5x² – 3x – 4 = 0 and give your answer correct to 3 significant figures:
Sol :
We have 5x² – 3x – 4 = 0
Here a = 5, b = – 3, c = – 4
x=3+9.4310 or x=3−9.4310
⇒x=12.4310, or x=−6.4310
⇒x=1.24 or x=-0.643
Comments
Post a Comment