ML Aggarwal Solution Class 10 Chapter 5 Quadratic Equations in One Variable Exercise 5.3
Exercise 5.3
Question 1
(i) 2x² – 7x + 6 = 0
(ii) 2x² – 6x + 3 = 0
Sol :
(i) 2x² – 7x + 6 = 0
Here a = 2, b = -7, c = 6
=49-48=1
∴$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-b \pm \sqrt{D}}{2 a}$
$=\frac{-(-7) \pm \sqrt{1}}{2 \times 2}=\frac{7 \pm 1}{4}$
∴$x_{1}=\frac{7+1}{4}=\frac{8}{4}=2$ and $x_{2}=\frac{7-1}{4}=\frac{6}{4}=\frac{3}{2}$
∴$x=2 ,\frac{3}{2}$
(ii) $2 x^{2}-6 x+3=0$
Here a=2, b=-6, c=3
then $D=b^{2}-4 a c=(-6)^{2}-4 \times 2 \times 3$
=36-24=12
Now $x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-6) \pm \sqrt{12}}{2 \times 2}=\frac{6 \pm 2 \sqrt{3}}{4}$
∴$x_{1}=\frac{6+2 \sqrt{3}}{4}=\frac{2(3+\sqrt{3})}{4}=\frac{3+\sqrt{3}}{2}$
$x_{2}=\frac{6-2 \sqrt{3}}{4}=\frac{2(3-\sqrt{3})}{4}=\frac{3-\sqrt{3}}{2}$
Hence $x=\frac{3+\sqrt{3}}{2}, \frac{3-\sqrt{3}}{2}$
Question 2
(i) x² + 7x – 7 = 0
(ii) (2x + 3)(3x – 2) + 2 = 0
Sol :
(i) x² + 7x – 7 = 0
Here a = 1, b = 7, c = -7
Question 3
(i)256x² – 32x + 1 = 0
(ii) 25x² + 30x + 7 = 0
Sol :
(i) 256x² – 32x + 1 = 0
Here a = 256, b = -32, c = 1
Question 4
Question 5
Question 6
Question 7
(i) $x-\frac{1}{x}=3, x \neq 0$
(ii) $\frac{1}{x}+\frac{1}{x-2}=3, x \neq 0,2$
Sol :
(i) $x-\frac{1}{x}=3$
$x^{2}-1=3 x$
$\Rightarrow x^{2}-3 x-1=0$
Here a=1, b=-3, c=-1
$\therefore b^{2}-4 a c=(-3)^{2}-4 \times 1 \times(-1)$
=9+4=13
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\therefore x=\frac{3+\sqrt{13}}{2}$ and $\frac{3-\sqrt{13}}{2}$
(ii) $\frac{1}{x}+\frac{1}{x-2}=3$
$\quad \frac{x-2+x}{x(x-2)}=3 \Rightarrow \frac{2 x-2}{x^{2}-2 x}=3$
$\Rightarrow 3 x^{2}-6 x=2 x-2 \Rightarrow 3 x^{2}-6 x-2 x+2=0$
$\Rightarrow 3 x^{2}-8 x+2=0$
Here a=3, b=-8, c=2
$ b^{2}-4 a c=(-8)^{2}-4 \times 3 \times 2$
=64-24=40
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{-(-8) \pm \sqrt{40}}{2 \times 3}=\frac{8 \pm 2 \sqrt{10}}{6}=\frac{4 \pm \sqrt{10}}{3}$
$\therefore x=\frac{4+\sqrt{10}}{3}$ and $\frac{4-\sqrt{10}}{3}$
Question 8
$\frac{1}{x-2}+\frac{1}{x-3}+\frac{1}{x-4}=0$
Sol :
$\frac{1}{x-2}+\frac{1}{x-3}+\frac{1}{x-4}=0$
$\Rightarrow \frac{1}{x-2}+\frac{1}{x-3}=-\frac{1}{x-4}$
$\Rightarrow \frac{x-3+x-2}{(x-2)(x-3)}=-\frac{1}{x-4}$
$\Rightarrow \frac{2 x-5}{x^{2}-5 x+6}=\frac{-1}{x-4}$
$\quad(2 x-5)(x-4)=-1\left(x^{2}-5 x+6\right)$
$\Rightarrow 2 x^{2}-8 x-5 x+20=-x^{2}+5 x-6$
$\Rightarrow 2 x^{2}-8 x-5 x+20+x^{2}-5 x+6=0$
$\Rightarrow 3 x^{2}-18 x+26=0$
Here, a=3, b=-18, c=26
$\therefore x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{-(-18) \pm \sqrt{(-18)^{2}-4 \times 3 \times 26}}{2 \times 3}$
$=\frac{18 \pm \sqrt{324-312}}{6}$
$=\frac{18 \pm \sqrt{12}}{6}=\frac{18 \pm 2 \sqrt{3}}{6}$
$=\frac{9 \pm \sqrt{3}}{3}$ (dividing by 2)
$\therefore x=\frac{9+\sqrt{3}}{3}, \frac{9-\sqrt{3}}{3}$
$=3+\frac{\sqrt{3}}{3}, 3-\frac{\sqrt{3}}{3}$
$=3+\frac{1}{\sqrt{3}}, 3-\frac{1}{\sqrt{3}}$
Question 9
Solve : $x: 2\left(\frac{2 x-1}{x+3}\right)-3\left(\frac{x+3}{2 x-1}\right)=5, x \neq-3, \frac{1}{2}$
Sol :
$x: 2\left(\frac{2 x-1}{x+3}\right)-3\left(\frac{x+3}{2 x-1}\right)=5$
Let $\frac{2 x-1}{x+3}=y$ then $\frac{x+3}{2 x-1}=\frac{1}{y}$
$\therefore 2 y-\frac{3}{y}=5$
$ 2 y^{2}-3=5 y$
$ \Rightarrow 2 y^{2}-5 y-3=0$
Here, a=2, b=-5, c=-3
$b^{2}-4 a c=(-5)^{2}-4 \times 2 \times(-3)$
=25+24=49
Now, $y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{-(-5) \pm \sqrt{49}}{2 \times 2}=\frac{5 \pm 7}{4}$
$y=\frac{5+7}{4}=\frac{12}{4}=3$
or $y=\frac{5-7}{4}=\frac{-2}{4}=\frac{-1}{2}$
$\therefore y=3, \frac{-1}{2}$
When $y=3,$ then $\frac{2 x-1}{x+3}=3$
$\Rightarrow 3 x+9=2 x-1$
$\Rightarrow 3 x-2 x=-1-9 \Rightarrow x=-10$
When $y=\frac{-1}{2},$ then
or $\frac{2 x-1}{x+3}=\frac{-1}{2}$
4x-2=-x-3
$4 x+x=-3+2 \Rightarrow 5 x=-1$
$\quad x=\frac{-1}{5}$
$\therefore x=-10, \frac{-1}{5}$
Question 10
Solve the following equation by using quadratic equations for x and give your
(i) x² – 5x – 10 = 0
(ii) 5x(x + 2) = 3
Sol :
(i) x² – 5x – 10 = 0
On comparing with, ax² + bx + c = 0
$\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(-10)}}{2 \times 1}$
$\therefore x=\frac{5 \pm \sqrt{25+40}}{2}$
$\Rightarrow x=\frac{5 \pm \sqrt{65}}{2}=\frac{5 \pm 8.06}{2}$
Either $x=\frac{5+8.06}{2}=\frac{13.06}{2}=6.53$
or $x=\frac{5-8.06}{2}=\frac{-3.06}{2}=-1.53$
∴ x=6.53, x=-1.53
(ii)
5x(x+2)=3
5x(x+2)=3
$5 x^{2}+10 x=3$
$5 x^{2}+10 x-3=0$
Here a=5, b=10, c=-3
$\mathrm{D}=b^{2}-4 a c=(10)^{2}-4 \times 5 \times(-3)$
=100+60=160
$\therefore x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-10 \pm \sqrt{160}}{2 \times 5}$
$=\frac{-10 \pm \sqrt{16 \times 10}}{10}=\frac{-10 \pm 4 \sqrt{10}}{10}$
$=\frac{-10 \pm 4(3.162)}{10}=\frac{-10 \pm 12.648}{10}$
$\therefore x_{1}=\frac{-10+12.648}{10}=\frac{2.648}{10}=0.2648$
=0.265
$ x_{2}=\frac{-10-12.648}{10}=\frac{-22.648}{10}=-2.2648$
$\therefore x=0.26,-2.26$ Ans.
Question 11
Solve the following equations by using quadratic formula and give your answer correct to 2 decimal places
(i) 4x² – 5x – 3 = 0
Sol :
(i) Given equation 4x² – 5x – 3 = 0
Comparing with ax² + bx + c = 0, we have
$=\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 4 \times(-3)}}{2 \times 4}$
$=\frac{5 \pm \sqrt{25+48}}{8}=\frac{5 \pm \sqrt{73}}{8}=\frac{5 \pm 8.544}{8}$
$=\frac{5+8.544}{8}$ or $\frac{5-8.544}{8}$
$=\frac{13.544}{8}$ or $\frac{-3.544}{8}$
$=1.693$ or -0.443
=1.69 or -0.44 (correct to 2 decimal places)
(ii)
$2 x-\frac{1}{x}=7 \Rightarrow 2 x^{2}-1=7 x$
$\Rightarrow 2 x^{2}-7 x-1=0$...(i)
Comparing (i) with $a x^{2}+b x+c,$ we get,
a=2, b=-7, c=-1
$\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\Rightarrow x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(2) \times(-1)}}{2 \times 2}$
$\Rightarrow \frac{7 \pm \sqrt{49+8}}{4}=\frac{7 \pm \sqrt{57}}{4}$
$\Rightarrow x=\frac{7+\sqrt{57}}{4}$ or $x=\frac{7-\sqrt{57}}{4}$
$\Rightarrow x=\frac{7+7.55}{4}$ or $x=\frac{7-7.55}{4}$
$\Rightarrow x=\frac{14.55}{4}$ or $x=\frac{-0.55}{4}$
$\Rightarrow x=3.64$ or $x=-0.14$ Ans.
Question 12
Solve the following equation: $x-\frac{18}{x}=6$. Give your answer correct to two x significant figures. (2011)
Sol :
$x-\frac{18}{x}=6$
=3×2.73
or 3×-0.73=8.19 or -2.19
Question 13
Solve the equation 5x² – 3x – 4 = 0 and give your answer correct to 3 significant figures:
Sol :
We have 5x² – 3x – 4 = 0
Here a = 5, b = – 3, c = – 4
$x=\frac{3+9.43}{10}$ or $x=\frac{3-9.43}{10}$
$\Rightarrow x=\frac{12.43}{10},$ or $x=\frac{-6.43}{10}$
⇒x=1.24 or x=-0.643
Comments
Post a Comment