ML Aggarwal Solution Class 10 Chapter 5 Quadratic Equations in One Variable Exercise 5.3

 Exercise 5.3

Question 1

(i) 2x² – 7x + 6 = 0

(ii) 2x² – 6x + 3 = 0

Sol :

(i) 2x² – 7x + 6 = 0

Here a = 2, b = -7, c = 6

D=b24ac=(7)24×2×6

=49-48=1

x=b±b24ac2a=b±D2a

=(7)±12×2=7±14

x1=7+14=84=2 and x2=714=64=32

x=2,32

(ii) 2x26x+3=0

Here a=2, b=-6, c=3

then D=b24ac=(6)24×2×3

=36-24=12

Now x=b±D2a=(6)±122×2=6±234

x1=6+234=2(3+3)4=3+32

x2=6234=2(33)4=332

Hence x=3+32,332


Question 2

(i) x² + 7x – 7 = 0

(ii) (2x + 3)(3x – 2) + 2 = 0

Sol :

(i) x² + 7x – 7 = 0

Here a = 1, b = 7, c = -7

D=b24ac=(7)24×1(7)
=49+28=77

x=b±D2a=7±772×1=7±772

x1=7+772 and x2=7772

Hence x=7+772,7772


(ii)
(2 x+3)(3 x-2)+2=0
6x24x+9x6+2=0
6x2+5x4=0
Here a=6, b=5, c=-4
D=b24ac=(5)24×6×(4)
=25+96=121

x=b±D2a=5±1212×6=5±1112
x1=5+1112=612=12
x2=51112=1612=43
Hence x=12,43 Ans.

Question 3

(i)256x² – 32x + 1 = 0

(ii) 25x² + 30x + 7 = 0

Sol :

(i) 256x² – 32x + 1 = 0

Here a = 256, b = -32, c = 1

D=b24ac=(32)24×256×1
=1024-1024=0
x=b±D2a=(32)±02×256=32512=116

x1=116,x2=116

Hence x=116,116 Ans.

(ii) 25x2+30x+7=0
Here a=25,b=30,c=7

D=b24ac=(30)24×25×7
=900-700=200

x=b±D2a=30±2002×25

=30±100×250=30±10250=3±25
x1=3+25 and x2=325

Hence x=3+25,325

Question 4

(i) 2x² + √5x – 5 = 0
(ii) √3x² + 10x – 8√3 = 0
Sol :
(i) 2x² + √5x – 5 = 0
Here a = 2, b = √5, c = -5

D=b24ac=(5)24×2×(5)
=5+40=45
x=b±D2a=5±452×2
=5±9×54=5±354
x1=5+354=254=52
x2=5354=454=5
Hence x=52,5 Ans.

(ii) 3x2+10x83=0
Here a=3,b=10,c=83
D=b24ac=(10)24×3×(83)
=100+96=196

x=b±D2a=10±1962×3=10±1423
x1=10+1423=423=2×33×3=233
x2=101423=2423=12×33×3
=1233=43
Hence x=233,43 Ans.

Question 5

(i) x2x+2+x+2x2=4
(ii) x+1x+3=3x+22x+3
Sol :
(i) x2x+2+x+2x2=4
(x2)2+(x+2)2(x+2)(x2)=4
x24x+4+x2+4x+4x24=4
2x2+8=4x216
2x2+84x2+16=0
2x2+24=0
x212=0
Here a=1, b=0, c=-12
D=b24ac=(0)24×1(12)
=0+48=48
x=b±D2a=0±482×1=±482
=±16×32=±432=±23
Hence roots are 23,23 Ans.

(ii) x+1x+3=3x+22x+3
(x+1)(2x+3)=(3x+2)(x+3)
2x2+3x+2x+3
=3x2+9x+2x+6
2x2+5x+33x211x6=0
x26x3=0
x2+6x+3=0
Here a=1, b=6, c=3
D=b24ac=(6)24×1×3
=3612=24
x=b±D2a
=6±242×1
x1=3+6,x2=36
Hence x=3+6,36 Ans.

Question 6

(i) a (x² + 1) = (a² + 1) x , a ≠ 0
(ii) 4x² – 4ax + (a² – b²) = 0
Sol :
(i) a (x² + 1) = (a² + 1) x
ax² – (a² + 1)x + a = 0
Here a=a,b=(a2+1),c=a
D=b24ac=[(a2+1)]24×a×a
=a4+2a2+14a2=a42a2+1
=(a21)2
x=b±D2a
=(a2+1)±(a21)22×a=(a2+1)±(a21)2a
x1=a2+1+a212a=2a22a=a
x2=a2+1a2+12a=22a=1a
Hence x=a,1a. Ans.

(ii) 4x24ax+(a2b2)=0
Here a=4,b=4a,c=a2b2
D=b24ac=(4a)24×4(a2b2)
=16a216(a2b2)
=16a216a2+16b2
D=16b2
x=b±D2a=(4a)±16b22×4
=4a±4b8=a±b2
x1=a+b2,x2=ab2
Hence x=a+b2,ab2 Ans.

Question 7

(i) x1x=3,x0

(ii) 1x+1x2=3,x0,2

Sol :

(i) x1x=3

x21=3x

x23x1=0

Here a=1, b=-3, c=-1

b24ac=(3)24×1×(1)

=9+4=13

x=b±b24ac2a

x=3+132 and 3132


(ii) 1x+1x2=3

x2+xx(x2)=32x2x22x=3

3x26x=2x23x26x2x+2=0

3x28x+2=0

Here a=3, b=-8, c=2

b24ac=(8)24×3×2

=64-24=40

x=b±b24ac2a

=(8)±402×3=8±2106=4±103

x=4+103 and 4103


Question 8

1x2+1x3+1x4=0

Sol :

1x2+1x3+1x4=0

1x2+1x3=1x4

x3+x2(x2)(x3)=1x4

2x5x25x+6=1x4

(2x5)(x4)=1(x25x+6)

2x28x5x+20=x2+5x6

2x28x5x+20+x25x+6=0

3x218x+26=0

Here, a=3, b=-18, c=26

x=b±b24ac2a

=(18)±(18)24×3×262×3

=18±3243126

=18±126=18±236

=9±33 (dividing by 2)

x=9+33,933

=3+33,333

=3+13,313


Question 9

Solve : x:2(2x1x+3)3(x+32x1)=5,x3,12

Sol :

x:2(2x1x+3)3(x+32x1)=5

Let 2x1x+3=y then x+32x1=1y

2y3y=5

2y23=5y

2y25y3=0

Here, a=2, b=-5, c=-3

b24ac=(5)24×2×(3)

=25+24=49

Now, y=b±b24ac2a

=(5)±492×2=5±74

y=5+74=124=3

or y=574=24=12

y=3,12


When y=3, then 2x1x+3=3

3x+9=2x1

3x2x=19x=10

When y=12, then

or 2x1x+3=12

4x-2=-x-3

4x+x=3+25x=1

x=15

x=10,15


Question 10

Solve the following equation by using quadratic equations for x and give your

(i) x² – 5x – 10 = 0

(ii) 5x(x + 2) = 3

Sol :

(i) x² – 5x – 10 = 0

On comparing with, ax² + bx + c = 0

a=1, b=-5, c=-10

x=b±b24ac2a

x=(5)±(5)24(1)(10)2×1

x=5±25+402

x=5±652=5±8.062

Either x=5+8.062=13.062=6.53

or x=58.062=3.062=1.53

∴ x=6.53, x=-1.53


(ii)

5x(x+2)=3

5x(x+2)=3

5x2+10x=3

5x2+10x3=0

Here a=5, b=10, c=-3

D=b24ac=(10)24×5×(3)

=100+60=160

x=b±b24ac2a=10±1602×5

=10±16×1010=10±41010

=10±4(3.162)10=10±12.64810

x1=10+12.64810=2.64810=0.2648

=0.265

x2=1012.64810=22.64810=2.2648

x=0.26,2.26 Ans.


Question 11

Solve the following equations by using quadratic formula and give your answer correct to 2 decimal places 

(i) 4x² – 5x – 3 = 0

(ii) 2x1x=1

Sol :

(i) Given equation 4x² – 5x – 3 = 0

Comparing with ax² + bx + c = 0, we have

a=4, b=-5, c=-3
x=b±b24ac2a

=(5)±(5)24×4×(3)2×4

=5±25+488=5±738=5±8.5448

=5+8.5448 or 58.5448

=13.5448 or 3.5448

=1.693 or -0.443

=1.69 or -0.44 (correct to 2 decimal places)


(ii)

2x1x=72x21=7x

2x27x1=0...(i)

Comparing (i) with ax2+bx+c, we get,

a=2, b=-7, c=-1

x=b±b24ac2a

x=(7)±(7)24(2)×(1)2×2

7±49+84=7±574

x=7+574 or x=7574

x=7+7.554 or x=77.554

x=14.554 or x=0.554

x=3.64 or x=0.14 Ans.


Question 12

Solve the following equation: x18x=6. Give your answer correct to two x significant figures. (2011)

Sol :

x18x=6

⇒ x² – 6x – 18 = 0
a = 1, b = -6, c = -18

x=b±b24ac2a=6±36+722

=6±1082=6±632= or 6(11.73)2

=3×2.73

or 3×-0.73=8.19 or -2.19


Question 13

Solve the equation 5x² – 3x – 4 = 0 and give your answer correct to 3 significant figures:

Sol :

We have 5x² – 3x – 4 = 0

Here a = 5, b = – 3, c = – 4

x=b±b24ac2a=3±9+4×5×42×5=3±8910

x=3+9.4310 or x=39.4310

x=12.4310, or x=6.4310

⇒x=1.24 or x=-0.643

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2