ML Aggarwal Solution Class 10 Chapter 5 Quadratic Equations in One Variable Exercise 5.3
Exercise 5.3
Question 1
(i) 2x² – 7x + 6 = 0
(ii) 2x² – 6x + 3 = 0
Sol :
(i) 2x² – 7x + 6 = 0
Here a = 2, b = -7, c = 6
=49-48=1
∴x=−b±√b2−4ac2a=−b±√D2a
=−(−7)±√12×2=7±14
∴x1=7+14=84=2 and x2=7−14=64=32
∴x=2,32
(ii) 2x2−6x+3=0
Here a=2, b=-6, c=3
then D=b2−4ac=(−6)2−4×2×3
=36-24=12
Now x=−b±√D2a=−(−6)±√122×2=6±2√34
∴x1=6+2√34=2(3+√3)4=3+√32
x2=6−2√34=2(3−√3)4=3−√32
Hence x=3+√32,3−√32
Question 2
(i) x² + 7x – 7 = 0
(ii) (2x + 3)(3x – 2) + 2 = 0
Sol :
(i) x² + 7x – 7 = 0
Here a = 1, b = 7, c = -7
Question 3
(i)256x² – 32x + 1 = 0
(ii) 25x² + 30x + 7 = 0
Sol :
(i) 256x² – 32x + 1 = 0
Here a = 256, b = -32, c = 1
Question 4
Question 5
Question 6
Question 7
(i) x-\frac{1}{x}=3, x \neq 0
(ii) \frac{1}{x}+\frac{1}{x-2}=3, x \neq 0,2
Sol :
(i) x-\frac{1}{x}=3
x^{2}-1=3 x
\Rightarrow x^{2}-3 x-1=0
Here a=1, b=-3, c=-1
\therefore b^{2}-4 a c=(-3)^{2}-4 \times 1 \times(-1)
=9+4=13
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\therefore x=\frac{3+\sqrt{13}}{2} and \frac{3-\sqrt{13}}{2}
(ii) \frac{1}{x}+\frac{1}{x-2}=3
\quad \frac{x-2+x}{x(x-2)}=3 \Rightarrow \frac{2 x-2}{x^{2}-2 x}=3
\Rightarrow 3 x^{2}-6 x=2 x-2 \Rightarrow 3 x^{2}-6 x-2 x+2=0
\Rightarrow 3 x^{2}-8 x+2=0
Here a=3, b=-8, c=2
b^{2}-4 a c=(-8)^{2}-4 \times 3 \times 2
=64-24=40
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
=\frac{-(-8) \pm \sqrt{40}}{2 \times 3}=\frac{8 \pm 2 \sqrt{10}}{6}=\frac{4 \pm \sqrt{10}}{3}
\therefore x=\frac{4+\sqrt{10}}{3} and \frac{4-\sqrt{10}}{3}
Question 8
\frac{1}{x-2}+\frac{1}{x-3}+\frac{1}{x-4}=0
Sol :
\frac{1}{x-2}+\frac{1}{x-3}+\frac{1}{x-4}=0
\Rightarrow \frac{1}{x-2}+\frac{1}{x-3}=-\frac{1}{x-4}
\Rightarrow \frac{x-3+x-2}{(x-2)(x-3)}=-\frac{1}{x-4}
\Rightarrow \frac{2 x-5}{x^{2}-5 x+6}=\frac{-1}{x-4}
\quad(2 x-5)(x-4)=-1\left(x^{2}-5 x+6\right)
\Rightarrow 2 x^{2}-8 x-5 x+20=-x^{2}+5 x-6
\Rightarrow 2 x^{2}-8 x-5 x+20+x^{2}-5 x+6=0
\Rightarrow 3 x^{2}-18 x+26=0
Here, a=3, b=-18, c=26
\therefore x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
=\frac{-(-18) \pm \sqrt{(-18)^{2}-4 \times 3 \times 26}}{2 \times 3}
=\frac{18 \pm \sqrt{324-312}}{6}
=\frac{18 \pm \sqrt{12}}{6}=\frac{18 \pm 2 \sqrt{3}}{6}
=\frac{9 \pm \sqrt{3}}{3} (dividing by 2)
\therefore x=\frac{9+\sqrt{3}}{3}, \frac{9-\sqrt{3}}{3}
=3+\frac{\sqrt{3}}{3}, 3-\frac{\sqrt{3}}{3}
=3+\frac{1}{\sqrt{3}}, 3-\frac{1}{\sqrt{3}}
Question 9
Solve : x: 2\left(\frac{2 x-1}{x+3}\right)-3\left(\frac{x+3}{2 x-1}\right)=5, x \neq-3, \frac{1}{2}
Sol :
x: 2\left(\frac{2 x-1}{x+3}\right)-3\left(\frac{x+3}{2 x-1}\right)=5
Let \frac{2 x-1}{x+3}=y then \frac{x+3}{2 x-1}=\frac{1}{y}
\therefore 2 y-\frac{3}{y}=5
2 y^{2}-3=5 y
\Rightarrow 2 y^{2}-5 y-3=0
Here, a=2, b=-5, c=-3
b^{2}-4 a c=(-5)^{2}-4 \times 2 \times(-3)
=25+24=49
Now, y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
=\frac{-(-5) \pm \sqrt{49}}{2 \times 2}=\frac{5 \pm 7}{4}
y=\frac{5+7}{4}=\frac{12}{4}=3
or y=\frac{5-7}{4}=\frac{-2}{4}=\frac{-1}{2}
\therefore y=3, \frac{-1}{2}
When y=3, then \frac{2 x-1}{x+3}=3
\Rightarrow 3 x+9=2 x-1
\Rightarrow 3 x-2 x=-1-9 \Rightarrow x=-10
When y=\frac{-1}{2}, then
or \frac{2 x-1}{x+3}=\frac{-1}{2}
4x-2=-x-3
4 x+x=-3+2 \Rightarrow 5 x=-1
\quad x=\frac{-1}{5}
\therefore x=-10, \frac{-1}{5}
Question 10
Solve the following equation by using quadratic equations for x and give your
(i) x² – 5x – 10 = 0
(ii) 5x(x + 2) = 3
Sol :
(i) x² – 5x – 10 = 0
On comparing with, ax² + bx + c = 0
\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(-10)}}{2 \times 1}
\therefore x=\frac{5 \pm \sqrt{25+40}}{2}
\Rightarrow x=\frac{5 \pm \sqrt{65}}{2}=\frac{5 \pm 8.06}{2}
Either x=\frac{5+8.06}{2}=\frac{13.06}{2}=6.53
or x=\frac{5-8.06}{2}=\frac{-3.06}{2}=-1.53
∴ x=6.53, x=-1.53
(ii)
5x(x+2)=3
5x(x+2)=3
5 x^{2}+10 x=3
5 x^{2}+10 x-3=0
Here a=5, b=10, c=-3
\mathrm{D}=b^{2}-4 a c=(10)^{2}-4 \times 5 \times(-3)
=100+60=160
\therefore x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-10 \pm \sqrt{160}}{2 \times 5}
=\frac{-10 \pm \sqrt{16 \times 10}}{10}=\frac{-10 \pm 4 \sqrt{10}}{10}
=\frac{-10 \pm 4(3.162)}{10}=\frac{-10 \pm 12.648}{10}
\therefore x_{1}=\frac{-10+12.648}{10}=\frac{2.648}{10}=0.2648
=0.265
x_{2}=\frac{-10-12.648}{10}=\frac{-22.648}{10}=-2.2648
\therefore x=0.26,-2.26 Ans.
Question 11
Solve the following equations by using quadratic formula and give your answer correct to 2 decimal places
(i) 4x² – 5x – 3 = 0
Sol :
(i) Given equation 4x² – 5x – 3 = 0
Comparing with ax² + bx + c = 0, we have
=\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 4 \times(-3)}}{2 \times 4}
=\frac{5 \pm \sqrt{25+48}}{8}=\frac{5 \pm \sqrt{73}}{8}=\frac{5 \pm 8.544}{8}
=\frac{5+8.544}{8} or \frac{5-8.544}{8}
=\frac{13.544}{8} or \frac{-3.544}{8}
=1.693 or -0.443
=1.69 or -0.44 (correct to 2 decimal places)
(ii)
2 x-\frac{1}{x}=7 \Rightarrow 2 x^{2}-1=7 x
\Rightarrow 2 x^{2}-7 x-1=0...(i)
Comparing (i) with a x^{2}+b x+c, we get,
a=2, b=-7, c=-1
\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\Rightarrow x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(2) \times(-1)}}{2 \times 2}
\Rightarrow \frac{7 \pm \sqrt{49+8}}{4}=\frac{7 \pm \sqrt{57}}{4}
\Rightarrow x=\frac{7+\sqrt{57}}{4} or x=\frac{7-\sqrt{57}}{4}
\Rightarrow x=\frac{7+7.55}{4} or x=\frac{7-7.55}{4}
\Rightarrow x=\frac{14.55}{4} or x=\frac{-0.55}{4}
\Rightarrow x=3.64 or x=-0.14 Ans.
Question 12
Solve the following equation: x-\frac{18}{x}=6. Give your answer correct to two x significant figures. (2011)
Sol :
x-\frac{18}{x}=6
=3×2.73
or 3×-0.73=8.19 or -2.19
Question 13
Solve the equation 5x² – 3x – 4 = 0 and give your answer correct to 3 significant figures:
Sol :
We have 5x² – 3x – 4 = 0
Here a = 5, b = – 3, c = – 4
x=\frac{3+9.43}{10} or x=\frac{3-9.43}{10}
\Rightarrow x=\frac{12.43}{10}, or x=\frac{-6.43}{10}
⇒x=1.24 or x=-0.643
Comments
Post a Comment