ML Aggarwal Solution Class 10 Chapter 5 Quadratic Equations in One Variable Exercise 5.4
Exercise 5.4
Question 1
Find the discriminant of the following equations and hence find the nature of roots:
(i) 3x² – 5x – 2 = 0
(ii) 2x² – 3x + 5 = 0
(iii) 7x² + 8x + 2 = 0
(iv) 3x² + 2x – 1 = 0
(v) 16x² – 40x + 25 = 0
(vi) 2x² + 15x + 30 = 0.
Sol :
(i) 3x² – 5x – 2 = 0
Here a = 3, b = -5, c = -2
∴ Discriminant =49
∵D>0
∴ Roots are real and distinct
(ii) $2 x^{2}-3 x+5=0 $
Here a=2, b=-3, c=5
$\therefore D=b^{2}-4 a c=(-3)^{2}-4 \times 2 \times 5$=9-40=-31
∴ Discriminant =-31
∵D<0
∴ Roots are not real.
(iii) $7 x^{2}+8 x+2=0$
Here, a=7, b=8, c=2
$\therefore D=b^{2}-4 a c=(8)^{2}-4 \times 7 \times 2$=64-56=8
∵Discriminant $=8$
∴ D>0
∴ Roots are real and distinct
(iv) $3 x^{2}+2 x-1=0$
Here a=3, b=2, c=-1
∴ $D=b^{2}-4 a c=(2)^{2}-4 \times 3 \times(-1)$=4+12=16
∴ Discriminant =16
∴ D>0
∴ Roots are real and distinct
(v) $16 x^{2}-40 x+25=0$
a=16, b=-40, c=25
$\therefore \mathrm{D}=b^{2}-4 a c=(-40)^{2}-4 \times 16 \times 25$=1600-1600=0
∴ Discriminant =0
∵ D=0
∴ Roots are real and equal.
(vi) $2 x^{2}+15 x+30=0$
Here, a=2, b=15, c=30
$\therefore D=b^{2}-4 a c=(15)^{2}-4 \times 2 \times 30$=225-240=-15
∴ Discriminant =-15
∵ D<0
∴ Root are not real.
Question 2
Discuss the nature of the roots of the following quadratic equations :
(i) x² – 4x – 1 = 0
(ii) $3 x^{2}-2 x+\frac{1}{3}=0$
Sol :
(i) x² – 4x – 1 = 0
Here a = 1, b = -4, c = -1
$\therefore D=b^{2}-4 a c=(-2)^{2}-4 \times 3 \times \frac{1}{3}=4-4=0$
∵D=0
∴Roots are real and equal
(iii) $3 x^{2}-4 \sqrt{3} x+4=0$
Here $a=3, b=-4 \sqrt{3}, c=4$
$\therefore D=b^{2}-4 a c=(-4 \sqrt{3})^{2}-4 \times 3 \times 4$=48-48=0
∵D=0
∴Roots are real and equal
(iv) $x^{2}-\frac{1}{2} x+4=0$
Here, $a=1, b=-\frac{1}{2}, c=4$
$\therefore \mathrm{D}=b^{2}-4 a c=\left(-\frac{1}{2}\right)-4 \times 1 \times 4=\frac{1}{4}-16=\frac{63}{4}$
∵D=0
∴Roots are real and equal
(v) $-2 x^{2}+x+1=0$
Here, a=-2, b=1, c=1
$\mathrm{D}=b^{2}-4 a c=(1)^{2}-4 \times(-2) \times 1$=1+8=9
∵D=0
∴Roots are real and equal
(vi) $2 \sqrt{3} x^{2}-5 x+\sqrt{3}=0$
Here $a=2 \sqrt{3}, b=-5, c=\sqrt{3}$
$\therefore \mathrm{D}=b^{2}-4 a c=(-5)^{2}-4 \times 2 \sqrt{3} \times \sqrt{3}=25-24=1$
∵D=0
∴Roots are real and equal
Question 3
Find the nature of the roots of the following quadratic equations:
Here $a=1, b=-\frac{1}{2}, c=-\frac{1}{2}$
$\therefore \mathrm{D}=b^{2}-4 a c$
$=\left(\frac{-1}{2}\right)^{2}-4 \times 1 \times\left(\frac{-1}{2}\right)$
$=\frac{1}{4}+2=\frac{9}{4}$
$\because D=\frac{9}{4}>0$
∴Roots are real and unequal
(ii) $x^{2}-2 \sqrt{3} x-1=0$
Here $a=1, b=-2 \sqrt{3}, c=-1$
$\therefore D=b^{2}-4 a c$
$=(-2 \sqrt{3})^{2}-4 \times 1 \times(-1)=12+4=16$
∵ D>0
∴ Roots are real and unequal.
Question 4
Without solving the following quadratic equation, find the value of ‘p’ for which the given equations have real and equal roots:
(i) px² – 4x + 3 = 0
(ii) x² + (p – 2)x + p = 0.
Sol :
(i) px² – 4x + 3 = 0
Here a = p, b = -4, c = 3
∵ The roots are equal
∵ D=0
$\Rightarrow b^{2}-4 a c=0$
⇒ 16-12p=0
⇒ 12p=16
$\Rightarrow p=\frac{16}{12}=\frac{4}{3}$ $ \therefore \quad p=\frac{4}{3}$
(ii) $x^{2}+(p-3) x+p=0$
Here a=1, b=(p-3), c=p
∵ Equation has real and equal roots
$\therefore b^{2}-4 a c=0$
$\Rightarrow(p-3)^{2}-4(1)(p)=0 $
$\Rightarrow(p-3)^{2}-4 p=0$
$\Rightarrow p^{2}+9-6 p-4 p=0 $
$\Rightarrow p^{2}-10 p+9=0$
$\Rightarrow p^{2}-9 p-p+9=0 $
⇒p(p-9)-1(p-9)=0
⇒(p-1)(p-9)=0
∴ p=1,9
Question 5
Find the value (s) of k for which each of the following quadratic equation has equal roots :
(i) kx² – 4x – 5 = 0
(ii) (k – 4) x² + 2(k – 4) x + 4 = 0
Sol :
(i) kx² – 4x – 5 = 0
Here a = k, b = -4, c = 5
∵ Roots are equal.
∴ D=0
⇒$b^{2}-4 a c=0$
∴ 16+20k=0
⇒20k=-16
$\Rightarrow k=\frac{-16}{20}=\frac{-4}{5}$
Hence $k=\frac{-4}{5}$
(ii) $(k-4) x^{2}+2(k-4) x+4=0$
Here a=k-4, b=2(k-4), c=4
$\mathrm{D}=b^{2}-4 a c$
$=[2(k-4)]^{2}-4 \times(k-4) \times 4$
$=4\left(k^{2}+16-8 k\right)-16(k-4)$
$=4\left(k^{2}-8 k+16\right)-16(k-4)$
$=4\left[k^{2}-8 k+16-4 k+16\right]$
$=4\left(k^{2}-12 k+32\right)$
∵ Roots are equal
∴D=0
$\Rightarrow 4\left(k^{2}-12 k+32\right)=0$
$\Rightarrow k^{2}-12 k+32=0$
$\Rightarrow k^{2}-8 k-4 k+32=0$
⇒k(k-8)-4(k-8)=0
⇒(k-8)(k-4)=0
Either k-8=0, then k=8
or k-4=0 then k=4
But $k-4 \neq 0$
$k \neq 4$
k=8
Question 6
Find the value(s) of m for which each of the following quadratic equation has real and equal roots:
(i) (3m + 1)x² + 2(m + 1)x + m = 0
(ii) x² + 2(m – 1) x + (m + 5) = 0
Sol :
(i) (3m + 1)x² + 2(m + 1)x + m = 0
Here a = 3m + 1, b = 2(m + 1), c = m
$=[2(m+1)]^{2}-4 \times(3 m+1)(m)$
$=4\left(m^{2}+2 m+1\right)-12 m^{2}-4 m$
$=4 m^{2}+8 m+4-12 m^{2}-4 m$
$=-8 m^{2}+4 m+4$
∴ Roots are equal.
∴ D=0
$\Rightarrow-8 m^{2}+4 m+4=0$
$\Rightarrow 2 m^{2}-m-1=0$ (Dividing by 4)
$\Rightarrow 2 m^{2}-2 m+m-1=0$
⇒ 2m(m-1)+1(m-1)=0
⇒(m-1)(2 m+1)=0
Either m-1=0, then m=1 or 2m+1=0, then 2 m=-1
$\Rightarrow m=-\frac{1}{2}$
Question 7
Find the values of k for which each of the following quadratic equation has equal roots:
(i) 9x² + kx + 1 = 0
(ii) x² – 2kx + 7k – 12 = 0
Also, find the roots for those values of k in each case.
Sol :
(i) 9x² + kx + 1 = 0
Here a = 9, b = k, c = 1
$\therefore \mathrm{D}=b^{2}-4 a c$
$=k^{2}-4 \times 9 \times 1=k^{2}-36$
∵Roots are equal
∴D=0
$\Rightarrow k^{2}-36=0 $
⇒(k+6)(k-6)=0
Either k+6=0, then k=-6
∴k-6=0, then k=6
(a) If k=6 then
$9 x^{2}+6 x+1=0$
$\Rightarrow(3 x)^{2}+2 \times 3 x \times 1+(1)^{2}=0$
$\Rightarrow(3 x+1)^{2}=0$
∵3x+1=0
⇒3x=-1
$x=-\frac{1}{3},-\frac{1}{3}$
(b) If $k=-6,$ then
$9 x^{2}-6 x+1=0$
$(3 x)^{2}-2 \times 3 x \times 1+(1)^{2}=0$
$(3 x-1)^{2}=0 \Rightarrow 3 x-1=0$
3x=1
$\Rightarrow x=\frac{1}{3}$
$x=\frac{1}{3}, \frac{1}{3}$
(ii) $x^{2}-2 k x+7 k-12=0$
Here a=1, b=-2 k, c=7, k-12
∴$\mathrm{D}=b^{2}-4 a c$
$=(-2 k)^{2}-4 \times 1 \times(7 k-12)$
$=4 k^{2}-4(7 k-12)$
$=4 k^{2}-28 k+48$
∵Roots are equal
∴D=0
$4 k^{2}-28 k+48=0$
$k^{2}-7 k+12=0$
$k^{2}-3 k-4 k+12=0$
k(k-3)-4(k-3)=0
(k-3)(k-4)=0
Either k-3=0, then k=3
or k-4=0, then k=4
(a) If k=3, then
$x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{4 k \pm \sqrt{0}}{2 \times 1}=\frac{4 \times 3}{2}=\frac{12}{2}=6$
x=6,6
(b) If k=4, then
$x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-2 \times 4) \pm \sqrt{0}}{2 \times 1}=\frac{+8}{2}=4$
∴x=4,4
Question 8
Find the value(s) of p for which the quadratic equation (2p + 1)x² – (7p + 2)x + (7p – 3) = 0 has equal roots. Also find these roots.
Sol :
The quadratic equation given is (2p+1)x²–(7p+2)x+(7p–3)=0
Comparing with ax² + bx + c = 0, we have
Question 9
If – 5 is a root of the quadratic equation 2x² + px – 15 = 0 and the quadratic equation p(x² + x) + k = 0 has equal roots, find the value of k.
Sol :
-5 is a root of the quadratic equation
2x² + px – 15 = 0, then
⇒ 2(5)² – p( -5) – 15 = 0
⇒ 50 – 5p – 15 = 0
⇒ 35 – 5p = 0
$p\left(x^{2}+x\right)+k=0$ has equal roots $\Rightarrow p x^{2}+p x+k=0$
$\Rightarrow 7 x^{2}+7 x+k=0$
Here, a=7, b=7, c=k
$b^{2}-4 a c=(7)^{2}-4 \times 7 \times k$
=49-28 k
∵ Roots are equal
$\therefore b^{2}-4 a c=0$
⇒49-28 k=0
⇒ 28 k=49
$\Rightarrow k=\frac{49}{28}=\frac{7}{4}$
$\therefore k=\frac{7}{4}$
Question 10
Find the value(s) of p for which the equation 2x² + 3x + p = 0 has real roots.
Sol :
2x² + 3x + p = 0
Here, a = 2, b = 3, c = p
∵ Roots are real
∴$b^{2}-4 a c \geq 0$
9-8p≥0
9≥8p
8p≤9
$p \leq \frac{9}{8}$
Question 11
Find the least positive value of k for which the equation x² + kx + 4 = 0 has real roots.
Sol :
x² + kx + 4 = 0
Here, a = 1, b = k, c = 4
Question 12
Find the values of p for which the equation 3x² – px + 5 = 0 has real roots.
Sol :
3x² – px + 5 = 0
Here, a = 3, b = -p, c = 5
Comments
Post a Comment