ML Aggarwal Solution Class 10 Chapter 6 Factorization Exercise 6

 Exercise 6

Question 1

Find the remainder (without divisions) on dividing f(x) by x – 2, where

(i) f(x)=5x21x+4

(ii) f(x)=2x37x2+3

Sol :

Let x – 2 = 0, then x = 2

(i) Substituting value of x in f(x)

f(x)=5x27x+4

f(2)=5(2)27(2)+4

f(2)=2014+4=10

Hence Remainder=10


(ii) f(x)=2x37x2+3

f(2)=2(2)37(2)2+3=1628+3

Hence, Remainder=-9


Question 2

Using remainder theorem, find the remainder on dividing f(x) by (x + 3) where

(i) f(x)=2x25x+1

(ii) f(x)=3x3+7x25x+1

Sol :

Let x + 3 = 0

⇒ x = -3

Substituting the value of x in f(x),

(i) f(x)=2x25x+1
f(3)=2(3)25(3)+1
=18+15+1=34
Hence Remainder =34 Ans.

(ii) f(x)=3x3+7x25x+1
=3(3)3+7(3)25(3)+1
=-81+63+15+1=-2
Hence Remainder =-2


Question 3

Find the remainder (without division) on dividing f(x) by (2x + 1) where

(i) f(x)=4x2+5x+3
(ii) f(x)=3x37x2+4x+11

Sol :

Let 2x+1=0, then x=12

Substituting the value of x in f(x) :

(i) f(x)=4x2+5x+3

=4(12)2+5×(12)+3

=4×1452+3=152+3452=32

∴Remainder=32


(ii) f(x)=3x37x2+4x+11

=3(12)37(12)2+4(12)+11

=3(18)7(14)+4(12)+11

=38742+11

=31416+888=558=678

∴Remainder =678


Question 4

(i) Find the remainder (without division) when  2x33x2+7x8 is divided by x-1 (2000)

(ii) Find the remainder (without division) on dividing 3x2+5x9 by (3x + 2)

Sol :

(i) Let x – 1 = 0, then x = 1

Substituting value of x in f(x)

f(x)=2x33x2+7x8

=2(1)33(1)2+7(1)8

=2×13×1+7×18=23+78

=2

∴Remainder=2


(ii) Let 3x+2=0, then 3x=-2x=23

Substituting the value of x in f(x)

f(x)=3x2+5x9

=3(23)2+5(23)9

=3×495×239=431039

=639=29=11

∴Remainder=-11


Question 5

Using remainder theorem, find the value of k if on dividing 2x3+3x2kx+5 by x – 2, leaves a remainder 7. (2016)

Sol :

f(x)=2x2+3x2kx+5

g(x) = x – 2, if x – 2 = 0, then x = 2

Dividing f(x) by g(x) the remainder will be

f(2)=2(2)3+3(2)2k×2+5
=16+12-2k+5=33-2k
Remainder =7

∴33-2k=7

⇒33-7=2k

⇒2k=26

k=262=13

∴k=13


Question 6

Using remainder theorem, find the value of a if the division of x3+5x2ax+6 by (x – 1) leaves the remainder 2a.

Sol :

Let x – 1 = 0, then x = 1

Substituting the value of x in f(x)

f(x)=x3+5x2ax+6
=(1)3+5(1)2a(1)+6
=1+5-a+6=12-a

∵Remainder =2a

∴ 12-a=2a

⇒ 12=a+2 a 

⇒ 3a=12

∴ a=4


Question 7

(i) What number must be subtracted from 2x25x so that the resulting polynomial leaves the remainder 2, when divided by 2x + 1 ?

(ii) What number must be added to 2x37x2+2x so that the resulting polynomial leaves the remainder – 2 when divided by 2x – 3?

Sol :

(i) Let a be subtracted from 2x25x,

Dividing 2x25x by 2x+1,

2x+1¯)2x25xa(x32x+1)2x2+x2x+1)2x2x2x+1)¯2x26xa2x+1)2x26x32x+1)2x2+6x+a2x+1)2x2¯xa+3

Here remainder is (3-a) but we are given that remainder is 2

∴ 3-a=2

⇒-a=2-3-1

⇒a=1

Hence 1 is to be subtracted


(ii) Let a be added to 2x37x2+2x dividing it by 2x-3, then

2x3¯)2x37x2+2x+a(x22x22x3)2x33x22x+1)2x3+3x22x+1)¯2x24x2+2x2x+1)2x24x2+2x2x+1)2x2+4x22x+a_2x+1)2x23x24x+a2x+1)2x24x24x+a2x+1)2x24x2+4xa_2x+1)2x24x24a6

But remainder is -2, then 

⇒a-6=-2

⇒a=-2+6

⇒a=4

Hence 4 is to be added


Question 8

(i) When divided by x – 3 the polynomials x2px2+x+6 and 2x3x2(p+3)x6 leave the same remainder. Find the value of ‘p’

(ii) Find ‘a’ if the two polynomials ax3+3x29 and 2x3+4x+a, leaves the same remainder when divided by x + 3.

Sol :

By dividing

x3px2+x+6

and 2x3x2(p+3)x6

by x-3, the remainder is same

Let x-3=0, then x=3

Now by Remainder Theorem,

Let p(x)=x3px2+x+6

p(3)=(3)3p(3)2+3+6

=27-9p-9=36-9p

and q(x)=2x3x2(p+3)x6

q(3)=2(3)2(3)2(p+3)×36

=2×2793p96

=54-24-3p=30-3p

∵The remainder in each case is same

∴36-9p=30-3p

⇒36-30=9p-3p

⇒6=6p

p=66=1

⇒∴p=1


(ii) Find "a" if the two polynomials ax3+3x29 and 2x3+4x+a, leaves the same remainder when divided by x+3

The given polynomials are ax3+3x29 and 2x3+4x+a

Let p(x)=ax3+3x29

and q(x)=2x3+4x+a

Given that p(x) and q(x) leave the same remainder when divided by (x+3), Thus by Remainder Theorem, we have 

p(-3)=q(-3)

a(3)3+3(3)29=2(3)3+4(3)+a

⇒-27 a+27-9=-54-12+a

⇒-27 a+18=-66+a

⇒ -27 a-a=-66-18 

⇒ -28 a=-84

a=8428

∴a=3


Question 9

By factor theorem, show that (x + 3) and (2x – 1) are factors of 2x2+5x3.

Sol :
Let x + 3 = 0 then x = – 3
Substituting the value of x in f(x)

f(x)=2x2+5x3=2(3)2+5(3)3

f(3)=18153=0

∵Remainder=0, then x+3 is a factor

Again Let 2x-1=0, then x=12

Substituting the value of x in f(x)

f(x)=2x2+5x3

f(12)=2(12)2+5(12)3

=2×14+523

=12+523=0

∵Remainder=0

∴2x-1 is also a factor

hence proved


Question 10

Show that (x – 2) is a factor of 3x2x10 Hence factorise 3x2x10.

Sol :
Let x – 2 = 0, then x = 2
Substituting the value of x in f(x),

f(x)=3x2x10=3(2)2210
=12-2-10=0

∵Remainder is zero

∴x-2 is a factor of f(x)

Dividing 3x2x10 by x-2, we get

x2¯)3x2x10(3x+5x2)3x26xx2)3x2+x2)¯3x25x10x2)3x25x10x2)3x2+_x2)3x25x×

3x2x10=(x2)(3x+5)


Question 11

Show that (x – 1) is a factor of x35x2x+5 Hence factorise x35x2x+5

Sol :

Let x – 1 = 0, then x = 1

Substituting the value of x in f(x),

f(x)=x35x2x+5
=(1)35(1)21+5
=1-5-1+5=0

∵Remainder=0

∴x-1 is a factor of x35x2x+5

Now dividing f(x) by x-1, we get

x1¯)x35x2x+5(x24x5x1)x3x2x1)x3+x1)¯x34x2xx1)x34x2+4xx1)x3+x1)x3¯+4x25x+5x1)x3+4x25x+5x1)x3+4x2+5x+5_x1)x34x25x×


x35x2x+5

=(x1)(x24x5)

=(x1)[x25x+x5]

=(x-1)[x(x-5)+1(x-5)]

=(x-1)(x+1)(x-5)


Question 12

Show that (x – 3) is a factor of x37x2+15x9. Hence factorise x37x2+15x9

Sol :

Let x – 3 = 0, then x = 3,

Substituting the value of x in f(x),

f(x)=x37x2+15x9=(3)37(3)2+15(3)9
=27-63+45-9=72-72=0

∵Remainder=0

∴x-3 is a factor of x37x2+15x9

Now dividing it by x-3, we get

x3¯)x37x2+15x9(x24x+3x3)x33x2x3)x3+x1)¯x34x215xx1)x34x2+12xx1)x3+x1)x3¯+4x2+3x9x1)x3+4x2+3x9x1)x3+4x25x++5_x1)x34x25x×

x37x2+15x9

=(x3)(x24x+3)=(x3)[x2x3x+3]

=(x3)[x(x1)3(x1)]

=(x3)(x1)(x3)=(x3)2(x1)


Question 13

Show that (2x + 1) is a factor of 4x3+12x2+11x+3 .Hence factorise 4x3+12x2+11x+3.

Sol :

Let 2x + 1 = 0,

thenx=12

Substituting the value of x in f(x),

f(x)=4x3+12x2+11x+3

f(12)=4(12)3+12(12)2+11(12)+3

=4(18)+12(14)+11(12)+3

=12+3112+3

=6-6=0

∵Remainder=0

∴2x+1 is a factor of 4x3+12x2+11x+3

Now dividing f(x) by 2x+1, we get

Figure to be added

4x3+12x2+11x+3

=(2x+1)(2x2+5x+3)

=(2x+1)[2x2+2x+3x+3]

=(2x+1)[2x(x+1)+3(x+1)]

=(2x+1)[(x+1)(2x+3)]

=(2x+1)(x+1)(2x+3) 


Question 14

Show that 2x + 7 is a factor of 2x3+5x211x14. Hence factorise the given expression completely, using the factor theorem. (2006)

Sol :

Let 2x + 7 = 0, then 2x = -7

x=72

substituting the value of x in f(x),

f(x)=2x3+5x211x14

f(72)=2(72)3+5(72)211(72)14

=3434+2454+77214

=343+245+154564=399+3994=0

Hence, (2x+7) is a factor of f(x)

Now,2x3+5x211x14=(2x+7)(x2x2)

=(2x+7)[x22x+x2]

=(2x+7)[x(x2)+1(x2)]

=(2x+7)(x+1)(x2) 

Figure to be added


Question 15

Use factor theorem to factorise the following polynominals completely.

(i) x3+2x25x6
(ii) x313x12

Sol :

Let f(x)=x3+2x25x6

Factors of (∵6=± 1 ;± 2,± 3,± 6)$

Let x=-1, then

f(1)=(1)3+2(1)25(1)6

=-1+2(1)+5-6=-1+2+5-6=7-7=0

f(-1)=0

∴x+1 is a factor of f(x)

Now, dividing f(x) by x+1, we get

f(x)=(x+1)(x2+x6)

=(x+1)(x2+3x2x6)

=(x+1){x(x+3)-2(x+3)}

=(x+1)(x+3)(x-2)

Figure to be added


(ii) f(x)=x313x12

Let x=4, then

f(x)=(4)313(4)12

=64-52-12=64-64=0

f(x)=0

∴x-4 is a factor of f(x)

Now , dividing f(x) by (x-4) , we get

f(x)=(x4)(x2+4x+3)

=(x4)(x2+3x+x+3)

=(x4)[x(x+3)+1(x+3)]

=(x-4)(x+3)(x+1)

Figure to be added


Question 16

(i) Use the Remainder Theorem to factorise the following expression : 2x3+x213x+6. (2010)

(ii) Using the Remainder Theorem, factorise completely the following polynomial: 3x2+2x219x+6 (2012)

Sol :

(i) Let f(x) = 2x3+x213x+6

Factors of 6 are ±1, ±2, ±3, ±6

Let x = 2, then

f(2)=2(2)3+(2)213×2+6
=16+4-26+6=26-26=0

f(2)=0

∴x-2 is factor of f(x)

(By remainder theorem)

Dividing f(x) by x-2,  we get

Figure to be added

f(x)=(x2)(2x2+5x3)

=(x2){2x2+6xx3}

=(x-2){2 x(x+3)-1(x+3)}

=(x-2)(x+3)(2 x-1)


(ii) P(x)=3x3+2x219x+6

P(1)=3+219+6=80

P(1)=3+2+19+6=240

P(2)=24+8-38+6=0

Hence, (x-2) is a factor of P(x)

P(x)=3x3+2x219x+6

=3x36x2+8x216x3x+6

=3x2(x2)+8x(x2)3(x2)

=(x2)(3x2+8x3)

=(x2)(3x2+9xx3)

=(x2){3x(x+3)1(x+3)=(x2)(x+3)(3x1)


Question 17

Using the Remainder and Factor Theorem, factorise the following polynomial: x3+10x237x+26.

Sol :

f(x)=x3+10x237x+26

f(1)=(1)3+10(1)237(1)+26

= 1 + 10 – 37 + 26 = 0

x = 1

Figure to be added

x-1 is factor of f(x)

f(x)=(x1)(x2+11x26)

=(x1)(x2+13x2x26)

=(x-1)[x(x+13)-2(x+13)]

=(x-1)[(x-2)(x+13)]


Question 18

If (2 x + 1) is a factor of 6x3+5x2+ax2 find the value of a

Sol :
Let 2 x+1=0, then x=12
Substituting the value of x in 
f(x) f(x)=6x3+5x2+ax2

f(12)=6(12)3+5(12)2+a(12)2

=6(18)+5(14)+a(12)2

=34+54a22

=3+52a84=62a4

∵2x+1 is a factor of f(x)

∴Remainder=0

62a4=062a=0

2a=-6

a=-3

∴a=-3


Question 19

If (3x-2) is a factor of 3x3kx2+21x10, find the value of k

Sol :

Let 3x-2=0, then 3x=2
Substituting the value of x in f(x) 
f(x)=3x3kx2+21x10

f(23)=3(23)3k(23)2+21(23)10

=3×827k×49+21×2310

=894k9+1410=84k9+4

∵Remainder=0

84k9+4=0

⇒8-4k+36=0

⇒-4k+44=0

⇒4k=44

∵k=11


Question 20

If (x – 2) is a factor of 2x3x2+px2, then

(i) find the value of p.

(ii) with this value of p, factorise the above expression completely

Sol :

(i) Let x – 2 = 0, then x = 2

Now f(x) = 2x3x2+px2

f(2)=2(2)3(2)2+p×22

=2×84+2p2

=16-4+2 p-2=10+2 p

(ii) ∴f(2)=0, then 10+2p=0

⇒2p=-10

⇒p=-5

Now , the polynomial will be

2x3x25x2

=(x2)(2x2+3x+1)

=(x2)[2x2+2x+x+1]

=(x-2)[2 x(x+1)+1(x+1)]

=(x-2)(x+1)(2 x+1)

Figure to be added


Question 21

Find the value of ‘K’ for which x = 3 is a solution of the quadratic equation, (K+2)x2Kx+6=0.

Also, find the other root of the equation.

Sol :

(K+2)x2Kx+6=0…(1)

Substitute x = 3 in equation (1)

(4+2)x2(4)x+6=0

2x2+4x+6=0

x22x3=0 (Dividing by2) 

x23x+x3=0

⇒ x(x-3)+1(x-3)=0

⇒ (x+1)(x-3)=0

So, the roots are x=-1 and x=3

Thus, the other root of the equation is x=-1


Question 22

What number should be subtracted from 2x35x2+5x so that the resulting polynomial has 2x – 3 as a factor?

Sol :

Let the number to be subtracted be k and the resulting polynomial be f(x), then

f(x) =2x35x2+5xk

Since, 2x – 3 is a factor of f(x),

Now, converting 2x – 3 to factor theorem

f(32)=0

2x35x2+5xk=0

2(32)35(32)2+5(32)k=0

2×2785×94+5×32k=0

274454+152k=0

⇒27-45+30-4k=0

⇒-4 k+12=0

k=124

⇒k=3


Question 23

Find the value of the constants a and b, if (x – 2) and (x + 3) are both factors of the expression x3+ax2+bx12

Sol :

Let x – 2 = 0, then x = 0

Substituting value of x in f(x)

f(x)=x3+ax2+bx12

f(2)=(2)3+a(2)2+b(2)12

=8+4 a+2 b-12=4 a+2 b-4

∵x-2 is a factor

∴4a+2b-4=0

4a+2b=4

2a+b=2..(i)

Again , let x+3=0, then x=-3

Substituting the value of x in f(x)

f(x)=x3+ax2+bx12

=(3)3+a(3)2+b(3)12

=-27+9a-3b-12

=-39+9a-3b

3a-b=13...(ii)

Adding (i) and (ii)

5a=15

a=3

Substituting the value of a in (i)

2(3)+b=2

6+b=2

⇒b=2-6=-4

Hence, a=3, b=-4


Question 24

If (x + 2) and (x – 3) are factors of x3+ax+b, find the values of a and b. With these values of a and b, factorise the given expression.

Sol :

Let x + 2 = 0, then x = -2

Substituting the value of x in f(x),

f(x)=x3+ax+b

f(2)=(2)3+a(2)+b=82a+b

∵ x+2 is a factor

∴ Remainder is zero.

∴ -8-2a+b=0

⇒-2a+b=8

∴ 2a-b=-8...(i)

Again let x-3=0, then x=3

Substituting the value of x in f(x)

f(x)=x3+ax+b

f(3)=(3)3+a(3)+b=27+3a+b

∵x-3 is a factor

∴Remainder=0

⇒27+3a+b=0

⇒3a+b=-27...(ii)

Adding (i) and (ii)

5a=-35

a=355=7

Substituting value of a in (i) 

2(7)b=8

14b=8

b=8+14

b=6b=6

Hence a=-7, b=-6

(x+2) and (x-3) are the factors of 

x3+ax+b

x37x6

Now dividing x37x6 by (x+2)

(x-3) or x2x6, we get

Figure to be added

∴Factors are (x+2), (x-3) and (x+1)


Question 25

(x – 2) is a factor of the expression x3+ax2+bx+6. When this expression is divided by (x – 3), it leaves the remainder 3. Find the values of a and b. (2005)

Sol :

As x – 2 is a factor of

f(x)=x3+ax2+bx+6

∴f(2)=0

(2)3+a(2)2+b(2)+6=0

⇒8+4a+2b+6=0

⇒4a+2b=-14

⇒2a+b=-7..(i)

as on dividing f(x) by x-3

remainder=3

f(3)=3

(3)3+a(3)2+b(3)+6=3

⇒27+9a+3 b+6=3

⇒9a+3 b=-30

⇒3a+b=-10...(ii)

Solving simultaneously equation (i) and (ii)

2(-3)+b=-7

∴-6+b=-7

∴b=-1

∴a=-3, b=-1


Question 26

If (x – 2) is a factor of the expression 2x3+ax2+bx14 and when the expression is divided by (x–3), it leaves a remainder 52, find the values of a and b.

Sol :

f(x)=2x3+ax2+bx14

∴ (x – 2) is factor of f(x)

f(2) = 0

2(2)3+a(2)2+b(2)14=0
16+4a+2 b-14=0 
4a+2b=-2
2a+b=-1..(i)
Also,(x-3) it leaves remainder =52

f(3)=52

2(3)3+a(3)2+b(3)14=52

⇒54+9a+3b-14=52

⇒9a+3b=52-40

⇒9a+3b=12

⇒3a+b=4..(ii)

From (i) and (ii)

2a+b=13a+b=43ab=4a=5

∴a=5 putting  (i)

∴2(5)+b=-1

b=-1-10

b=-11

∴a=5, b=-11

27a8+2743b23=0

27a+5412b24=0 

(Multiplying by 8)

27a12b+30=0

27a12b=30

9a+4b=10 [dividing by (-3)]

9a+4b=10...(i)

Again let x+2=0, then x=-2

Substituting the value of x in f(x)

f(x)=ax3+3x2+bx3

f(2)=a(2)3+3(2)2+b(2)3

=-8 a+12-2 b-3

=-8 a-2 b+9

∵Remainder =-3

∵-8 a-2 b+9=-3 

⇒-8a-2b=-3-9

⇒ -8a-2 b=-12 (dividing by 2)

⇒ 4a+b=6..(ii)

Multiplying (ii) by 4

16a+4b=249a+4b=109a4b=7a=14

7a=14

a=147=2

Substituting the value of a in (i)

9(2)+4b=10

18+4b=10

b=84=2

Here, a=2, b=-2

f(x)=ax3+3x2+bx3

=2x3+3x22x3

∵2x+3 is a factor

∴Dividing f(x) by x+2

Figure to be added

2x3+3x22x3

=(2x+3)(x21)=(2x+3)[(x2)(1)2]

=(2x+3)(x+1)(x-1)


Question 27

If ax3+3x2+bx3 has a factor (2x + 3) and leaves remainder – 3 when divided by (x + 2), find the values of a and 6. With these values of a and 6, factorise the given expression.

Sol :

Let 2x + 3 = 0 then 2x = -3

x=32

Substituting the value of x in f(x),
f(x)=ax3+3x2+6x3

f(32)=a(32)3+3(32)2+b(32)3

=a(278)+3(94)+b(32)3

=27a8+2743b23

∵2x+3 is a factor of f(x)

∴Remainder=0


Question 28

Given f(x)=ax2+bx+2 and g(x)=bx2+ax+1. If x – 2 is a factor of f(x) but leaves the remainder – 15 when it divides g(x), find the values of a and b. With these values of a and b, factorise the expression. f(x)+g(x)+4x2+7x

Sol :

f(x)=ax2+bx+2

g(x)=bx2+ax+1

x – 2 is a factor of f(x)

Let x – 2 = 0

⇒ x = 2

f(2)=a(2)2+b×2+2=4a+2b+2

∴4a+2 b+2=0 (∵x-2 is its factor)

⇒2a+b+1=0...(i) (Divisible by 2)

Let x-2=0⇒x=2

g(2)=b(2)2+a×2+1

⇒4b+2a+1+15=0

⇒4b+2a+16=0

⇒2b+a+8=0 (Divisible by 2)

⇒a+2b+8=0...(ii)

Multiplying (i) by 2 and (ii) by 1

4a+2b+2=0a+2b+8=0a2b8=3a6=0

⇒3a=6 

a=63

∴a=2

Substituting the value of a in (i)

⇒2×2+b+1=0

⇒4+b+1=0

⇒b+5=0

⇒b=-5

Hence, a=2, b=-5

Now , f(x)+g(x)=4x2+7x

=2x25x+2+(5x2+2x+1)+4x2+7x

=2x25x+25x2+2x+1+4x2+7x

=6x25x25x+2x+7x+2+1

=x2+2x+3

=x2+x+3x+3

=x(x+1)+3(x+1)

=(x+1)(x+3)

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2