ML Aggarwal Solution Class 10 Chapter 7 Ratio and Proportion Exercise 7.3
Exercise 7.3
Question 1
If a : b : : c : d, prove that
(i) $\frac{2 a+5 b}{2 a-5 b}=\frac{2 c+5 d}{2 c-5 d}$
(ii) $\frac{5 a+11 b}{5 c+11 d}=\frac{5 a-11 b}{5 c-11 d}$
Applying componendo and dividendo,
$\frac{2 a+5 b}{2 a-5 b}=\frac{2 c+5 d}{2 c-5 d}$
(ii) ∵ a: b:: c: d
$\therefore \frac{a}{b}=\frac{c}{d} \Rightarrow \frac{5 a}{11 b}=\frac{5 c}{11 d}\left(\right.$ Multiply by $\left.\frac{5}{11}\right)$
Applying componendo and dividendo,
$\frac{5 a+11 b}{5 a-11 b}=\frac{5 c+11 d}{5 c-11 d}$
$\Rightarrow \frac{5 a+11 b}{5 c+11 d}=\frac{5 a-11 b}{5 c-11 d}$ (Applying alternendo)
(iii) ∵ a: b:: c: d
Applying componendo and dividendo,
$\frac{2 a+3 b}{2 a-3 b}=\frac{2 c+3 d}{2 c-3 d}$
⇒(2 a+3 b)(2 c-3 d)
=(2 a-3 b)(2 c+3 d) (By cross multiplication)
(iv) ∵ a: b:: c: d
$\Rightarrow \quad \frac{l a}{m b}=\frac{l c}{m d}\left(\right.$ Multiply by $\left.\frac{l}{m}\right)$
Applying componendo and dividendo,
$\frac{l a+m b}{l a-m b}=\frac{l c+m d}{l c-m d}$
$\Rightarrow \quad \frac{l a+m b}{l c+m d}=\frac{l a-m b}{l c-m d} \quad$ (By alternendo)
⇒(l a+m b):(l c+m d)::(l a-m b) :(l c-m d)
Question 2
(i) If $\frac{5 x+7 y}{5 u+7 y}=\frac{5 x-7 y}{5 u-7 y},$ Show that $\frac{x}{y}=\frac{u}{v}$
(ii) $\frac{8 a-5 b}{8 c-5 d}=\frac{8 a+5 b}{8 c+5 d},$ prove that $\frac{a}{b}=\frac{c}{d}$
Sol :
(i) $\frac{5 x+7 y}{5 x+7 y}=\frac{5 x-7 y}{5 x-7 y}$
Applying alternendo $\frac{5 x+7 y}{52+7 y}=\frac{5 x-7 y}{54-7}$
Applying componendo and dividendo
$\frac{5 x+7 y+5 x-7 y}{5 x+7 y-5 x+7 y}=\frac{5 u+7 v+5 u-7 v}{5 u+7 u-5 u+7 v}$
$\Rightarrow \frac{10 x}{14 y}=\frac{10 u}{14 v} \Rightarrow \frac{x}{y}=\frac{u}{v}$
Hence proved. ( Dividing by $\left.=\frac{10}{14}\right)$
(ii) $\frac{8 a-5 b}{8 c-5 d}=\frac{8 a+5 b}{8 c+5 d}$
$\Rightarrow \frac{8 a+5 b}{8 a-5 b}=\frac{8 c+5 d}{8 c-5 d} \quad$ (using alternendo)
Applying compounde and dividendo,
$\frac{8 a+5 b+8 a-5 b}{8 a+5 b-8 a+5 b}=\frac{8 c+5 d+8 c-5 c}{8 c+5 d-8 c+5 d}$
$\therefore \frac{16 a}{10 b}=\frac{16 c}{10 d}$
$\Rightarrow \frac{a}{b}=\frac{c}{d}$
(Dividing by $\left.\frac{16}{10}\right)$
Hence proved.
Question 3
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
Sol :
(4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d)
Applying componendo and dividendo
Hence, a,b,c,d are in proportion
Question 4
If (pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd) prove that a : b : : c : d
Sol :
(pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd)
Applying componendo and dividendo
$\Rightarrow \frac{2 p a}{2 q b}=\frac{2 p c}{2 q d}$
$\Rightarrow \frac{a}{b}=\frac{c}{d}$ $\left(\right.$ Dividing by $\left.\frac{2 p}{2 q}\right)$
hence a : b:: c : d
Question 5
If (ma + nb): b :: (mc + nd) : d, prove that a, b, c, d are in proportion.
Sol :
(ma + nb): b :: (mc + nd) : d
⇒ mad + nbd = mbc + nbd
⇒ mad = mbc
⇒ ad = bc
Hence a : b :: c : d.
Question 6
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Sol :
(11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²)
Applying componendo and dividendo
$\Rightarrow \frac{22 a^{2}}{26 b^{2}}=\frac{22 c^{2}}{26 d^{2}}$
$\Rightarrow \frac{a^{2}}{b^{2}}=\frac{c^{2}}{d^{2}}$ $\left(\right.$ Dividing by $\left.\frac{22}{26}\right)$
$\Rightarrow \frac{a}{b}=\frac{c}{d}$
hence a:b::c:d
Question 7
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
$\frac{a+3 b+2 c+6 d}{a-3 b+2 c-6 d}=\frac{a+3 b-2 c-6 d}{a-3 b-2 c+6 d}$
$\Rightarrow \frac{a+3 b+2 c+6 d}{a+3 b-2 c-6 d}=\frac{a-3 b+2 c-6 d}{a-3 b-2 c+6 d}$ (by altenendo)
Applying componendo and dividendo
$=\frac{a-3 b+2 c-6 d+a-3 b-2 c+6 d}{a-3 b+2 c-6 d-a+3 b+2 c-6 d}$
$\Rightarrow \frac{2(a+3 b)}{2(2 c+6 d)}=\frac{2(a-3 b)}{2(2 c-6 d)}$ (Dividing by 2)
$\Rightarrow \frac{a+3 b}{2 c+6 d}=\frac{a-3 b}{2 c-6 d}$ (by alternendo)
Again applying componendo and dividendo)
$\frac{a+3 b+a-3 b}{a+3 b-a+3 b}=\frac{2 c+6 d+2 c-6 d}{2 c+6 d-2 c+6 d}$
$\Rightarrow \frac{2 a}{6 b}=\frac{4 c}{12 d}=\frac{2 c}{6 d}$
$\Rightarrow \frac{a}{b}=\frac{c}{d}$ $\left[\right.$ Dividing by $\left.\frac{2}{6}\right]$
Question 8
If $x=\frac{2 a b}{a+b}$ find the value of $\frac{x+a}{x-a}+\frac{x+b}{x-b}$
Sol :
$x=\frac{2 a b}{a+b}$
$\Rightarrow \frac{x}{a}=\frac{2 b}{a+b}$
Applying componendo and dividendo,
Applying componendo and dividendo,
$\frac{x+b}{x-b}=\frac{2 a+a+b}{2 a-a-b}=\frac{3 a+b}{a-b}$..(ii)
Adding (i) and (ii)
$\frac{x+a}{x-a}+\frac{x+b}{x-b}=\frac{3 b+a}{b-a}+\frac{3 a+b}{a-b}$
$=-\frac{a+3 b}{a-b}+\frac{3 a+b}{a-b}$
$=\frac{-a-3 b+3 a+b}{a-b}$
$=\frac{2 a-2 b}{a-b}=\frac{2(a-b)}{a-b}=2$
Question 9
If $x=\frac{8 a b}{a+b}$ find the value of $\frac{x+4 a}{x-4 a}+\frac{x+4 b}{x-4 b}$
Sol :
$x=\frac{8 a b}{a+b}$
$\Rightarrow \frac{x}{4 a}=\frac{2 b}{a+b}$
Applying componendo and dividendo,
$\operatorname{Again} \frac{x}{4 b}=\frac{2 a}{a+b}$
Applying compondndo and dividendo,
$\frac{x+4 b}{x-4 b}=\frac{2 a+a+b}{2 a-a-b}=\frac{3 a+b}{a-b}$..(ii)
Adding (i) and (ii)
$\frac{x+4 a}{x-4 a}+\frac{x+4 b}{x-4 b}=\frac{3 b+a}{b-a}+\frac{3 a+b}{a-b}$
$=-\frac{a+3 b}{a-b}+\frac{3 a+b}{a-b}$
$=\frac{-a-3 b+3 a+b}{a-b}=\frac{2 a-2 b}{a-b}$
$=\frac{2(a-b)}{a-b}=2$
Question 10
If $x=\frac{4 \sqrt{6}}{\sqrt{2}+\sqrt{3}}$ find the value of $\frac{x+2 \sqrt{2}}{x-2 \sqrt{2}}+\frac{x+2 \sqrt{3}}{x-2 \sqrt{3}}$
Sol :
$x=\frac{4 \sqrt{6}}{\sqrt{2}+\sqrt{3}}$
$\Rightarrow \frac{4 \sqrt{2} \times \sqrt{3}}{\sqrt{2}+\sqrt{3}}$
$\frac{x}{2 \sqrt{2}}=\frac{2 \sqrt{3}}{\sqrt{2}+\sqrt{3}}$
Applying componendo and dividendo,
$\frac{x+2 \sqrt{2}}{x-2 \sqrt{2}}=\frac{2 \sqrt{3}+\sqrt{2}+\sqrt{3}}{2 \sqrt{3}-\sqrt{2}-\sqrt{3}}$
$=\frac{3 \sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$..(i)
Again $\frac{x}{2 \sqrt{3}}=\frac{2 \sqrt{2}}{\sqrt{2}+\sqrt{3}}$
Applying componendo and dividendo,
$\frac{x+2 \sqrt{3}}{x-2 \sqrt{3}}=\frac{2 \sqrt{2}+\sqrt{2}+\sqrt{3}}{2 \sqrt{2}-\sqrt{2}-\sqrt{3}}$
$=\frac{3 \sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}$..(ii)
Adding (i) and (ii)
$\frac{x+2 \sqrt{2}}{x-2 \sqrt{2}}+\frac{x+2 \sqrt{3}}{x-2 \sqrt{3}}$
$=\frac{3 \sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{3 \sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}$
$=\frac{3 \sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}-\frac{3 \sqrt{2}+\sqrt{3}}{\sqrt{3}-\sqrt{2}}$
$=\frac{3 \sqrt{3}+\sqrt{2}-3 \sqrt{2}-\sqrt{3}}{\sqrt{3}-\sqrt{2}}$
$=\frac{2 \sqrt{3}-2 \sqrt{2}}{\sqrt{3}-\sqrt{2}}=\frac{2(\sqrt{3}-\sqrt{2})}{\sqrt{3}-\sqrt{2}}=2$
Question 11
Solve $x: \frac{\sqrt{36 x+1}+6 \sqrt{x}}{\sqrt{36 x+1}-6 \sqrt{x}}=9$
Sol :
$\frac{\sqrt{36 x+1}+6 \sqrt{x}}{\sqrt{36 x+1}-6 \sqrt{x}}=\frac{9}{1}$
Applying componendo and dividendo,
$\Rightarrow 900 x=576 x+16$
$ \Rightarrow 900 x-576 x=16$
$\Rightarrow 324 x=16$
$\therefore x=\frac{16}{324}=\frac{4}{81}$
Question 12
Find x from the following equations :
(ii) $\frac{\sqrt{x+4}+\sqrt{x-10}}{\sqrt{x+4}-\sqrt{x-10}}=\frac{5}{2}$
Applying componendo and dividendo,
$\frac{\sqrt{x+4}+\sqrt{x-10}+\sqrt{x+4}-\sqrt{x-10}}{\sqrt{x+4}+\sqrt{x-10}-\sqrt{x+4}+\sqrt{x-10}}=\frac{5+2}{5-2}$
$\Rightarrow \quad \frac{2 \sqrt{x+4}}{2 \sqrt{x-10}}=\frac{7}{3} \Rightarrow \frac{\sqrt{x+4}}{\sqrt{x-10}}=\frac{7}{3}$
Squaring both sides,
$\frac{x+4}{x-10}=\frac{49}{9}$
$ \Rightarrow 49 x-490=9 x+36$
$\Rightarrow 49 x-9 x=36+490 \Rightarrow \quad 40 x=526$
$\therefore x=\frac{526}{40}=\frac{263}{20}$
(iii) $\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}=\frac{a}{b}$
Applying componendo and dividendo,
$\frac{\sqrt{1+x}+\sqrt{1-x}+\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}-\sqrt{1+x}+\sqrt{1-x}}=\frac{a+b}{a-b}$
$\Rightarrow \frac{2 \sqrt{1+x}}{2 \sqrt{1-x}}=\frac{a+b}{a-b} \Rightarrow \frac{\sqrt{1+x}}{\sqrt{1-x}}=\frac{a+b}{a-b}$
Squaring both sides, $\frac{1+x}{1-x}=\frac{(a+b)^{2}}{(a-b)^{2}}$
Again applying componendo and dividendo,
$\frac{1+x+1-x}{1+x-1+x}=\frac{(a+b)^{2}+(a-b)^{2}}{(a+b)^{2}-(a-b)^{2}}$
$\Rightarrow \frac{2}{2 x}=\frac{2\left(a^{2}+b^{2}\right)}{4 a b}$
$ \Rightarrow \frac{1}{x}=\frac{a^{2}+b^{2}}{2 a b}$
$\therefore x=\frac{2 a b}{a^{2}+b^{2}}$
(iv) $\frac{\sqrt{12 x+1}+\sqrt{2 x-3}}{\sqrt{12 x+1}-\sqrt{2 x-3}}=\frac{3}{2}$
Applying componendo and dividendo,
$\frac{\sqrt{12 x+1}+\sqrt{2 x-3}+\sqrt{12 x+1}-\sqrt{2 x-3}}{\sqrt{12 x+1}+\sqrt{2 x-3}-\sqrt{12 x+1}+\sqrt{2 x-3}}$
$=\frac{3+2}{3-2}$
$\Rightarrow \frac{2 \sqrt{12 x+1}}{2 \sqrt{2 x-3}}=\frac{5}{1}$
$\Rightarrow \frac{\sqrt{12 x+1}}{\sqrt{2 x-3}}=\frac{5}{1}$
Squaring both sides, $\frac{12 x+1}{2 x-3}=\frac{25}{1}$
$\Rightarrow \quad 50 x-75=12 x+1$
$\Rightarrow \quad 50 x-12 x=1+75$
$\Rightarrow \quad 38 x=76 \Rightarrow x=\frac{76}{38}=2$
∴ x=2
(v) $\frac{3 x+\sqrt{9 x^{2}-5}}{3 x-\sqrt{9 x^{2}-5}}=\frac{5}{1}$
Applying componendo and dividendo.
$\frac{3 x+\sqrt{9 x^{2}-5}+3 x-\sqrt{9 x^{2}-5}}{3 x+\sqrt{9 x^{2}-5}-3 x+\sqrt{9 x^{2}-5}}=\frac{5+1}{5-1}$
$\frac{6 x}{2 \sqrt{9 x^{2}-5}}=\frac{6}{4} \Rightarrow \frac{3 x}{\sqrt{9 x^{2}-5}}=\frac{3}{2}$
Squaring both sides
$\frac{9 x^{2}}{9 x^{2}-5}=\frac{9}{4} \Rightarrow 81 x^{2}-45=36 x^{2}$
$\Rightarrow \quad 81 x^{2}-36 x^{2}=45 \Rightarrow 45 x^{2}=45$
$\Rightarrow \quad x^{2}=1 \Rightarrow x=\pm 1$
$\therefore x=1,-1$
CHECK
(i) When x=1, then in the given equation
$\frac{3 \times 1+\sqrt{9 \times 1-5}}{3 \times 1-\sqrt{9 \times 1-5}}=\frac{3+\sqrt{4}}{3-\sqrt{4}}=\frac{3+2}{3-2}=\frac{5}{1}$
which is given
∴x=1
(ii) When x=-1, then
$3(-1)+\sqrt{9(-1)^{2}-5}$
$3(-1)-\sqrt{9(-1)^{2}-5}$
$=\frac{-3+\sqrt{9-5}}{-3-\sqrt{9-5}}=\frac{-3+\sqrt{4}}{-3-\sqrt{4}}$
$=\frac{-3+2}{-3-2}=\frac{-1}{-5}=\frac{1}{5} \neq \frac{5}{1}$
$\therefore x=-1$ is not its solution.
Hence x=1
(vi) $\frac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}}=\frac{c}{d}$
Applying componendo and dividendo,
$\frac{\sqrt{a+x}+\sqrt{a-x}+\sqrt{a+x}-\sqrt{a-x}}{\sqrt{a+x}+\sqrt{a-x}-\sqrt{a+x}+\sqrt{a-x}}=\frac{c+d}{c-d}$
$\Rightarrow \frac{2 \sqrt{a+x}}{2 \sqrt{a-x}}=\frac{c+d}{c-d} \Rightarrow \frac{\sqrt{a+x}}{\sqrt{a-x}}=\frac{c+d}{c-d}$
Squaring both sides $\frac{a+x}{a-x}=\frac{(c+d)^{2}}{(c-d)^{2}}$
Again applying componendo and dividendo
$\frac{a+x+a-x}{a+x-a+x}=\frac{(c+d)^{2}+(c-d)^{2}}{(c+d)^{2}-(c-d)^{2}}$
$\Rightarrow \frac{2 a}{2 x}=\frac{2\left(c^{2}+d^{2}\right)}{4 c d} \Rightarrow \frac{a}{x}=\frac{c^{2}+d^{2}}{2 c d}$
$\Rightarrow x\left(c^{2}+d^{2}\right)=2 a c d$
$\Rightarrow x=\frac{2 a c d}{c^{2}+d^{2}}$
Question 13
Solve $\frac{1+x+x^{2}}{1-x+x^{2}}=\frac{62(1+x)}{63(1-x)}$
Sol :
$\frac{1+x+x^{2}}{1-x+x^{2}}=\frac{62(1+x)}{63(1-x)}$
$\Rightarrow \frac{(1-x)\left(1+x+x^{2}\right)}{(1+x)\left(1-x+x^{2}\right)}=\frac{62}{63}$
$\Rightarrow \frac{(1+x)\left(1-x+x^{2}\right)}{(1-x)\left(1+x+x^{2}\right)}=\frac{63}{62}$
$\Rightarrow \quad \frac{1+x^{3}}{1-x^{3}}=\frac{63}{62}$
Applying componendo and dividendo,
$\frac{1+x^{3}+1-x^{3}}{1+x^{3}-1+x^{3}}=\frac{63+62}{63-62}$
$\Rightarrow \frac{2}{2 x^{3}}=\frac{125}{1}$
$ \Rightarrow \frac{1}{x^{3}}=\frac{125}{1}$
$\Rightarrow x^{3}=\frac{1}{125}=\left(\frac{1}{5}\right)^{3}$
$\therefore x=\frac{1}{5}$ Ans.
Question 14
Solve for $x: 16\left(\frac{a-x}{a+x}\right)^{3}=\frac{a+x}{a-x}$
Sol :
$x : 16\left(\frac{a-x}{a+x}\right)^{3}=\frac{a+x}{a-x}$
$\Rightarrow\left(\frac{a+x}{a-x}\right) \times\left(\frac{a+x}{a-x}\right)^{3}=16$
$\Rightarrow\left(\frac{a+x}{a-x}\right)^{4}=16=(\pm 2)^{4}$
$ \Rightarrow \frac{a+x}{a-x}=\pm 2$
When $\frac{a+x}{a-x}=\frac{2}{1}$
Applying componendo and dividendo,
$\frac{a+x+a-x}{a+x-a+x}=\frac{-2+1}{-2-1}$
$ \Rightarrow=\frac{2 a}{2 x}=\frac{-1}{-3}$
$\Rightarrow \frac{a}{x}=\frac{1}{3}$
$ \Rightarrow x=3 a$
Hence $x=\frac{a}{3}, 3 a$
Question 15
If $x=\frac{\sqrt{a+x}+\sqrt{a-1}}{\sqrt{a+1}-\sqrt{a-1}}$ , using properties of proportion , show that x² – 2ax + 1 = 0
Sol :
We have $x=\frac{\sqrt{a+x}+\sqrt{a-1}}{\sqrt{a+1}-\sqrt{a-1}}$
(Applying componendo and dividendo)
$\Rightarrow \frac{(x+1)^{2}}{(x-1)^{2}}=\frac{a+1}{a-1}$
$\Rightarrow \frac{(x+1)^{2}+(x-1)^{2}}{(x+1)^{2}-(x-1)^{2}}=\frac{2 a}{2}$
(Again applying componendo and dividendo)
$\Rightarrow \frac{x^{2}+1+2 x+x^{2}+1-2 x}{x^{2}+1+2 x-x^{2}-1+2 x}=a$
$\Rightarrow \frac{2 x^{2}+2}{4 x}=a \Rightarrow \frac{2\left(x^{2}+1\right)}{4 x}=a$
$\Rightarrow \frac{\left(x^{2}+1\right)}{2 x}=a \Rightarrow 2 a x=x^{2}+1$
$\Rightarrow x^{2}-2 a x+1=0 \quad$
Question 16
Given : $x=\frac{\sqrt{\alpha^{2}+b^{2}}+\sqrt{\alpha^{2}-b^{2}}}{\sqrt{\alpha^{2}+b^{2}}-\sqrt{\alpha^{2}-b^{2}}}$ Use componendo and dividendo to prove that
Sol :
If $\frac{x}{1}=\frac{\sqrt{\alpha^{2}+b^{2}}+\sqrt{\alpha^{2}-b^{2}}}{\sqrt{\alpha^{2}+b^{2}}-\sqrt{\alpha^{2}-b^{2}}}$
Applying componendo and dividendo both sides
Squaring, both sides we have
$\Rightarrow \frac{(x+1)^{2}}{(x-1)^{2}}=\frac{a^{2}+b^{2}}{a^{2}-b^{2}} $
$\Rightarrow \frac{x^{2}+1+2 x}{x^{2}+1-2 x}=\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
Applying componendo and dividendo both sides
$\Rightarrow \frac{x^{2}+1+2 x+x^{2}+1-2 x}{x^{2}+1+2 x-x^{2}-1+2 x}=\frac{a^{2}+b^{2}+a^{2}-b^{2}}{a^{2}+b^{2}-a^{2}+b^{2}}$
$\frac{2 x^{2}+2}{4 x}=\frac{2 a^{2}}{2 b^{2}}$
$ \Rightarrow \frac{x^{2}+1}{2 x}=\frac{a^{2}}{b^{2}} \Rightarrow b^{2}=\frac{2 a^{2} x}{x^{2}+1}$
Question 17
Given that $\frac{a^{3}+3 a b^{2}}{b^{3}+3 a^{2} b}=\frac{63}{62}$. Using componendo and dividendo find a: b. (2009)
$\Rightarrow \frac{a}{b}=\frac{6}{4}$
$ \Rightarrow \frac{a}{b}=\frac{3}{2}$
a : b = 3 : 2
Question 18
Give $\frac{x^{3}+12 x}{6 x^{2}+8}=\frac{y^{3}+27 y}{9 y^{2}+27}$ Using componendo and dividendo find x : y.
Using componendo-dividendo, we have
$\Rightarrow \frac{(x+2)^{3}}{(x-2)^{3}}=\frac{(y+3)^{3}}{(9 y-3)^{3}}$
$\Rightarrow\left(\frac{x+2}{x-2}\right)^{3}=\left(\frac{y+3}{y-3}\right)^{3}$
$\Rightarrow \frac{x+2}{x-2}=\frac{y+3}{y-3}$
Again using componendo-dividendo, we get
$\frac{x+2+x-2}{x+2-x+2}=\frac{y+3+y-3}{y+3-y+3}$
$\Rightarrow \frac{2 x}{4}=\frac{2 y}{3}$
$\Rightarrow \frac{x}{2}=\frac{y}{3}$
$\Rightarrow \frac{x}{y}=\frac{2}{3}$
Thus the required ratio is x: y=2: 3
Question 19
Using the properties of proportion, solve the following equation for x; given
Applying componendo and dividendo
$\Rightarrow \frac{x^{3}+3 x^{2}+3 x+1}{x^{3}-3 x^{2}+3 x-1}=\frac{432}{250}=\frac{216}{125}$
$\Rightarrow \frac{(x+1)^{3}}{(x-1)^{3}}=\frac{216}{125}=\left(\frac{6}{5}\right)^{3}$
$\therefore \frac{x+1}{x-1}=\frac{6}{5}$
⇒6 x-6=5 x+5
x=11
Question 20
If $\frac{x+y}{a x+b y}=\frac{y+z}{a y+b z}=\frac{z+x}{a z+b x}$ , prove that each of these ratio is equal to $\frac{2}{a+b}$ unless x + y + z = 0
$\frac{x+y}{a x+b y}=\frac{y+z}{a y+b z}=\frac{z+x}{a z+b x}$
$=\frac{x+y+y+z+z+x}{a x+b y+a y+b z+\alpha z+b x}$
$=\frac{2(x+y+z)}{x(a+b)+y(a+b)+z(a+b)}$
$=\frac{2(x+y+z)}{(a+b)(x+y+z)}=\frac{2}{a+b}$ if $x+y+z \neq 0$
Comments
Post a Comment