ML Aggarwal Solution Class 10 Chapter 8 Matrices Exercise MCQs
MCQs
Question 1
If A=[aij]2×2 where aij=i+j, then A is equal to
(a) [1234]
(b) [2334]
(c) [1212]
(d) [1122]
Sol :
A=[aij]2×2 where aij=i+j, then A is equal to
[2334]
Ans (b)
Question 2
If [x+34y−4x+y]=[5439] then the values of x and y are
Comparing we get
x + 3 = 5
⇒ x = 5 – 3 = 2
and y – 4 = 3
⇒ y = 3 + 4 = 7
x = 2, y = 7
Ans (a)
Question 3
If [x+2y−y3x7]=[−4364] then the values of x and y are
Comparing, we get
3x = 6
⇒x=63=2⇒ -y = 3
⇒ y = – 3
x = 2, y = -3 (b)
Question 4
If [x−2y53y]=[653−2] then the value of x is
(a) – 2
(b) 0
(c) 1
(d) 2
Comparing, we get
y = -2
and x – 2y = 6
⇒ x – 2 x (-2) = 6
⇒ x + 4 = 6
⇒ x = 6 – 4 = 2
Ans (d)
Question 5
If [x+2y3y4x2]=[0−382] then the value of x – y is
(a) – 3
(b) 1
(c) 3
(d) 5
Comparing, we get
3y = -3
4x=8
⇒x=84=2
x – y = 2 – (-1) = 2 + 1 = 3
Ans (c)
Question 6
If x[23]+y[−10]=[106] then the values of x and y are
(a) x = 2, y = 6
(b) x = 2, y = – 6
(c) x = 3, y = – 4
(d) x = 3, y = – 6
Sol :
Given :
x[23]+y[−10]=[106]
⇒[2x3x]+[−y0]=[106]
⇒[2x−y3x+0]=[106]
⇒[2x−y3x]=[106]
Comparing , we get
3x=6⇒x=63=2
and 2x-y=10
2×2−y=10
⇒4−y=10
⇒−y=10−4=6
⇒y=−6
∴x=2,y=−6
Ans (b)
Question 7
If B=[−1503] and A−2B=[04−75]
then the matrix A is equal to
Sol :
Given :
B=[−1503]
A−2B=[04−75]
2B=2×[−1503]=[−21006]
A−2B=[04−75]
⇒A=[04−75]+2B
⇒A=[04−75]+[−21006]
=[0−24+10−7+05+6]=[−214−711]
Ans (d)
Question 8
If A+B=[1011] and A−2B=[−110−1]
then A is equal to
Sol :
A+B=[1011] and
A−2B=[−110−1]
⇒2 A+2 B=[2022]
(multiplying by 2)...(i)
A−2B=[−110−1]...(ii)
Adding (i), and (ii) , we get
3 A=[2022]+[−110−1]=[1121]
∴A=13[1121]
Ans (a)
Question 9
A=[1001] then A2=
(a) [1100]
(b) [0011]
(c) [1001]
(d) [0110]
Sol :
Given :
A=[1001]
A2=A×A=[1001]×[1001]
=[1+00+00+00+1]=[1001]
Ans (d)
Question 10
If A=[0110], then A2=
(a) [1100]
(b) [0011]
(c) [0110]
(d) [1001]
Sol :
Given :
A=[0110]
A2=A×A=[0110]×[0110]
=[0+10+00+01+0]=[1001]
Ans (d)
Question 11
If A=[0010], then A2=
(a) A
(b) O
(c) I
(d) 2 A
Sol :
given :
A=[0010]
A2=A×A=[0010]×[0010]
=[0+00+00+00+0]=[0000]=0
Ans (b)
Question 12
If A=[1011], then A2=
(a) [2011]
(b) [1012]
(c) [1021]
(d) none of these
Sol :
Given :
A=[1011]
A2=A×A=[1011]×[1011]
=[1+00+01+10+1]=[1021]
Ans (c)
Question 13
If A=[31−12], then A2=
(a) [85−53]
(b) [8−553]
(c) [8−5−5−3]
(d) [8−5−53]
Sol :
A=[31−12]
A2=A×A=[31−12][31−12]
=[9+(−1)3+2−3−2−1+4]=[85−53]
Ans (a)
Question 14
If A=[2−2−22], then A2=pA, then the value of p is
(a) 2
(b) 4
(c) -2
(d) -4
Sol :
A=[2−2−22]
and A2=pA
A2=A×A=[2−2−22]×[2−2−22]
=[4+4−4−4−4−44+4]=[8−8−88]
p A=p[2−2−22]=[2p−2p−2p2p]
∵A2=pA
∴[8−8−88]=[2p−2p−2p2p]
Comparing , we get
8=2p⇒p=4
Ans (b)
Comments
Post a Comment