ML Aggarwal Solution Class 10 Chapter 8 Matrices Exercise MCQs
MCQs
Question 1
If $A=\left[a_{ij}\right]_{2 \times 2}$ where $a_{ij}=i+j,$ then $A$ is equal to
(a) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(b) $\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$
Sol :
$A=\left[a_{i j}\right]_{2 \times 2}$ where $a_{i j}=i+j,$ then $A$ is equal to
$\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]$
Ans (b)
Question 2
If $\left[\begin{array}{cc}x+3 & 4 \\ y-4 & x+y\end{array}\right]=\left[\begin{array}{ll}5 & 4 \\ 3 & 9\end{array}\right]$ then the values of x and y are
Comparing we get
x + 3 = 5
⇒ x = 5 – 3 = 2
and y – 4 = 3
⇒ y = 3 + 4 = 7
x = 2, y = 7
Ans (a)
Question 3
If $\left[\begin{array}{cc}x+2 y & -y \\ 3 x & 7\end{array}\right]=\left[\begin{array}{cc}-4 & 3 \\ 6 & 4\end{array}\right]$ then the values of x and y are
Comparing, we get
3x = 6
$\Rightarrow x=\frac{6}{3}=2$⇒ -y = 3
⇒ y = – 3
x = 2, y = -3 (b)
Question 4
If $\left[\begin{array}{cc}x-2 y & 5 \\ 3 & y\end{array}\right]=\left[\begin{array}{cc}6 & 5 \\ 3 & -2\end{array}\right]$ then the value of x is
(a) – 2
(b) 0
(c) 1
(d) 2
Comparing, we get
y = -2
and x – 2y = 6
⇒ x – 2 x (-2) = 6
⇒ x + 4 = 6
⇒ x = 6 – 4 = 2
Ans (d)
Question 5
If $\left[\begin{array}{cc}x+2 y & 3 y \\ 4 x & 2\end{array}\right]=\left[\begin{array}{cc}0 & -3 \\ 8 & 2\end{array}\right]$ then the value of x – y is
(a) – 3
(b) 1
(c) 3
(d) 5
Comparing, we get
3y = -3
4x=8
$\Rightarrow x=\frac{8}{4}=2$
x – y = 2 – (-1) = 2 + 1 = 3
Ans (c)
Question 6
If $x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{c}-1 \\ 0\end{array}\right]=\left[\begin{array}{c}10 \\ 6\end{array}\right]$ then the values of x and y are
(a) x = 2, y = 6
(b) x = 2, y = – 6
(c) x = 3, y = – 4
(d) x = 3, y = – 6
Sol :
Given :
$x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{c}-1 \\ 0\end{array}\right]=\left[\begin{array}{c}10 \\ 6\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}2 x \\ 3 x\end{array}\right]+\left[\begin{array}{c}-y \\ 0\end{array}\right]=\left[\begin{array}{c}10 \\ 6\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}2 x-y \\ 3 x+0\end{array}\right]=\left[\begin{array}{c}10 \\ 6\end{array}\right]$
$ \Rightarrow\left[\begin{array}{c}2 x-y \\ 3 x\end{array}\right]=\left[\begin{array}{c}10 \\ 6\end{array}\right]$
Comparing , we get
$3 x=6 \Rightarrow x=\frac{6}{3}=2$
and 2x-y=10
$2 \times 2-y=10 $
$\Rightarrow 4-y=10$
$\Rightarrow-y=10-4=6 $
$\Rightarrow y=-6$
$\therefore x=2, y=-6$
Ans (b)
Question 7
If $B=\left[\begin{array}{cc}-1 & 5 \\ 0 & 3\end{array}\right]$ and $A-2 B=\left[\begin{array}{cc}0 & 4 \\ -7 & 5\end{array}\right]$
then the matrix A is equal to
Sol :
Given :
$B=\left[\begin{array}{cc}-1 & 5 \\ 0 & 3\end{array}\right]$
$A-2 B=\left[\begin{array}{cc}0 & 4 \\ -7 & 5\end{array}\right]$
$2 B=2 \times\left[\begin{array}{cc}-1 & 5 \\ 0 & 3\end{array}\right]=\left[\begin{array}{cc}-2 & 10 \\ 0 & 6\end{array}\right]$
$A-2 B=\left[\begin{array}{cc}0 & 4 \\ -7 & 5\end{array}\right] $
$\Rightarrow A=\left[\begin{array}{cc}0 & 4 \\ -7 & 5\end{array}\right]+2 B$
$\Rightarrow \mathrm{A}=\left[\begin{array}{cc}0 & 4 \\ -7 & 5\end{array}\right]+\left[\begin{array}{cc}-2 & 10 \\ 0 & 6\end{array}\right]$
$=\left[\begin{array}{cc}0-2 & 4+10 \\ -7+0 & 5+6\end{array}\right]=\left[\begin{array}{cc}-2 & 14 \\ -7 & 11\end{array}\right]$
Ans (d)
Question 8
If $A+B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $A-2 B=\left[\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right]$
then A is equal to
Sol :
$A+B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and
$A-2 B=\left[\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right]$
$\Rightarrow 2 \mathrm{~A}+2 \mathrm{~B}=\left[\begin{array}{ll}2 & 0 \\ 2 & 2\end{array}\right]$
(multiplying by 2)...(i)
$A-2 B=\left[\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right]$...(ii)
Adding (i), and (ii) , we get
$3 \mathrm{~A}=\left[\begin{array}{ll}2 & 0 \\ 2 & 2\end{array}\right]+\left[\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$
$\therefore \mathrm{A}=\frac{1}{3}\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$
Ans (a)
Question 9
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then $A^{2}=$
(a) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Sol :
Given :
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$A^{2}=A \times A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \times\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{ll}1+0 & 0+0 \\ 0+0 & 0+1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Ans (d)
Question 10
If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],$ then $A^{2}=$
(a) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Sol :
Given :
$A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$\mathrm{A}^{2}=\mathrm{A} \times \mathrm{A}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \times\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$=\left[\begin{array}{ll}0+1 & 0+0 \\ 0+0 & 1+0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Ans (d)
Question 11
If $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],$ then $A^{2}=$
(a) A
(b) O
(c) I
(d) $2 \mathrm{~A}$
Sol :
given :
$A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$
$A^{2}=A \times A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right] \times\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$
$=\left[\begin{array}{ll}0+0 & 0+0 \\ 0+0 & 0+0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
Ans (b)
Question 12
If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right],$ then $A^{2}=$
(a) $\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
(d) none of these
Sol :
Given :
$A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
$\mathrm{A}^{2}=\mathrm{A} \times \mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
$=\left[\begin{array}{ll}1+0 & 0+0 \\ 1+1 & 0+1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
Ans (c)
Question 13
If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right],$ then $A^{2}=$
(a) $\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]$
(b) $\left[\begin{array}{cc}8 & -5 \\ 5 & 3\end{array}\right]$
(c) $\left[\begin{array}{cc}8 & -5 \\ -5 & -3\end{array}\right]$
(d) $\left[\begin{array}{cc}8 & -5 \\ -5 & 3\end{array}\right]$
Sol :
$A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
$A^{2}=A \times A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
$=\left[\begin{array}{cc}9+(-1) & 3+2 \\ -3-2 & -1+4\end{array}\right]=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]$
Ans (a)
Question 14
If $A=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right],$ then $A^{2}=p A$, then the value of p is
(a) 2
(b) 4
(c) -2
(d) -4
Sol :
$A=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]$
and $A^{2}=p A$
$A^{2}=A \times A=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right] \times\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]$
$=\left[\begin{array}{cc}4+4 & -4-4 \\ -4-4 & 4+4\end{array}\right]=\left[\begin{array}{cc}8 & -8 \\ -8 & 8\end{array}\right]$
$p \mathrm{~A}=p\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]=\left[\begin{array}{cc}2 p & -2 p \\ -2 p & 2 p\end{array}\right]$
$\because A^{2}=p A$
$\therefore\left[\begin{array}{cc}8 & -8 \\ -8 & 8\end{array}\right]=\left[\begin{array}{cc}2 p & -2 p \\ -2 p & 2 p\end{array}\right]$
Comparing , we get
$8=2 p \Rightarrow p=4$
Ans (b)
Comments
Post a Comment