ML Aggarwal Solution Class 10 Chapter 8 Matrices Exercise MCQs

 MCQs

Question 1

If A=[aij]2×2 where aij=i+j, then A is equal to

(a) [1234]

(b) [2334]

(c) [1212]

(d) [1122]

Sol :

A=[aij]2×2 where aij=i+j, then A is equal to

[2334]

Ans (b)


Question 2

If [x+34y4x+y]=[5439]  then the values of x and y are

(a) x = 2, y = 7
(b) x = 7, y = 2
(c) x = 3, y = 6
(d) x = – 2, y = 7
Sol :
[x+34y4x+y]=[5439]

Comparing we get

x + 3 = 5

⇒ x = 5 – 3 = 2

and y – 4 = 3

⇒ y = 3 + 4 = 7

x = 2, y = 7 

Ans (a)


Question 3

If [x+2yy3x7]=[4364] then the values of x and y are

(a) x = 2, y = 3
(b) x = 2, y = – 3
(c) x = – 2, y = 3
(d) x = 3, y = 2
Sol :
[x+2yy3x7]=[4364]

Comparing, we get

3x = 6

x=63=2⇒ -y = 3

⇒ y = – 3

x = 2, y = -3 (b)


Question 4

If [x2y53y]=[6532]  then the value of x is

(a) – 2

(b) 0

(c) 1

(d) 2

Sol :
[x2y53y]=[6532]

Comparing, we get

y = -2

and x – 2y = 6

⇒ x – 2 x (-2) = 6

⇒ x + 4 = 6

⇒ x = 6 – 4 = 2

Ans (d)


Question 5

If [x+2y3y4x2]=[0382] then the value of x – y is

(a) – 3

(b) 1

(c) 3

(d) 5

Sol :
[x+2y3y4x2]=[0382]

Comparing, we get

3y = -3

y=33=1

4x=8

x=84=2

x – y = 2 – (-1) = 2 + 1 = 3

Ans (c)


Question 6

If x[23]+y[10]=[106] then the values of x and y are

(a) x = 2, y = 6

(b) x = 2, y = – 6

(c) x = 3, y = – 4

(d) x = 3, y = – 6

Sol :

Given :

x[23]+y[10]=[106]

[2x3x]+[y0]=[106]

[2xy3x+0]=[106]

[2xy3x]=[106]

Comparing , we get

3x=6x=63=2

and 2x-y=10

2×2y=10

4y=10

y=104=6

y=6

x=2,y=6

Ans (b)


Question 7

If B=[1503] and A2B=[0475]

then the matrix A is equal to

(a) [214711]
(b) [214711]
(c) [214711]
(d) [214711]

Sol :

Given :

B=[1503]

A2B=[0475]

2B=2×[1503]=[21006]

A2B=[0475]

A=[0475]+2B

A=[0475]+[21006]

=[024+107+05+6]=[214711]

Ans (d)


Question 8

If A+B=[1011] and A2B=[1101]

then A is equal to

(a) 13[1121]
(b) 13[2112]
(c) [1121]
(d) [2112]

Sol :

A+B=[1011] and

A2B=[1101]

2 A+2 B=[2022] 

(multiplying by 2)...(i)

A2B=[1101]...(ii)

Adding (i), and (ii) , we get

3 A=[2022]+[1101]=[1121]

A=13[1121]

Ans (a)


Question 9

A=[1001] then A2=

(a) [1100]

(b) [0011]

(c) [1001]

(d) [0110]

Sol :

Given :

A=[1001]

A2=A×A=[1001]×[1001]

=[1+00+00+00+1]=[1001]

Ans (d)


Question 10

If A=[0110], then A2=

(a) [1100]

(b) [0011]

(c) [0110]

(d) [1001]

Sol :

Given :

A=[0110]

A2=A×A=[0110]×[0110]

=[0+10+00+01+0]=[1001]

Ans (d)


Question 11

If A=[0010], then A2=

(a) A

(b) O

(c) I

(d) 2 A

Sol :

given :

A=[0010]

A2=A×A=[0010]×[0010]

=[0+00+00+00+0]=[0000]=0

Ans (b)


Question 12

If A=[1011], then A2=

(a) [2011]

(b) [1012]

(c) [1021]

(d) none of these

Sol :

Given :

A=[1011]

A2=A×A=[1011]×[1011]

=[1+00+01+10+1]=[1021]

Ans (c)


Question 13

If A=[3112], then A2=

(a) [8553]

(b) [8553]

(c) [8553]

(d) [8553]

Sol :

A=[3112]

A2=A×A=[3112][3112]

=[9+(1)3+2321+4]=[8553]

Ans (a)


Question 14

If A=[2222], then A2=pA, then the value of p is 

(a) 2

(b) 4

(c) -2

(d) -4

Sol :

A=[2222]

and A2=pA

A2=A×A=[2222]×[2222]

=[4+444444+4]=[8888]

p A=p[2222]=[2p2p2p2p]

A2=pA

[8888]=[2p2p2p2p]

Comparing , we get

8=2pp=4

Ans (b)

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2