ML Aggarwal Solution Class 10 Chapter 8 Matrices Exercise 8.2
Exercise 8.2
Question 1
Given that M=[2012] and N=[20−12],find M+2N
Sol :
M=[2012]
N=[20−12]
∴M+2 N=[2012]+2[20−12]
=[2012]+[40−24]
=[2+40+01−22+4]=[60−16]
Question 2
If A=[20−31] and B=[01−23]
find 2A – 3B
Question 3
3 A+4 B=3[1423]+4[1231]
=[31269]+[48124]
Question 4
(ii) C+B=[0000]
C=[0000]−B=[0000]−[−4−1−3−2]
=[0−(−4)0−(−1)0−(−3)0−(−2)]=[4132]
Question 5
A=[12−23] and B=[−2−112],C=[032−1]
Find A + 2B – 3C
A=[12−23] and B=[−2−112],C=[032−1]
∴ A + 2B – 3C
=[1−4−02−2−9−2+2−63+4+3]=[−3−9−610]
Question 6
If A=[0−112] and B=[12−11]
Find the matrix X if :
(i) 3A + X = B
(ii) X – 3B = 2A
(i) 3A + X = B
⇒ X = B – 3A
=[12−11]−[0−336]
=[1−02+3−1−31−6]=[15−4−5]
Question 7
Solve the matrix equation
Sol :
[2150]−3X=[−7426]
[2150]−[−7426]=3X
∴X=13[9−33−6]=[3−11−2]
Question 8
If [14−23]+2M=3[320−3], find the matrix M
[14−23]+2M=3[320−3]
2M =
=[9−16−40−(−2)−9−3]=[822−12]
∴M=12[822−12]=[411−6]
(Dividing by 2)
Question 9
A=[2−620] and B=[−3240],C=[4002]
Find the matrix X such that A + 2X = 2B + C
Question 10
Question 11
Question 12
Question 13
If [52−1y+1]−2[12x−13−2]=[3−8−72] Find the values of x and y
⇒[52−1y+1]−[24x−26−4]=[3−8−72]
⇒[5−22−4x+2−1−6y+1+4]=[3−8−72]
⇒[34−4x−7y+5]=[3−8−72]
Comparing the corresponding terms, we get
4-4 x=-8
⇒−4x=−8−4
⇒−4x=−12
⇒x=−12−4=3
and y+5=2
⇒y=2−5=−3
∴x=3,y=−3
Question 14
If [a342]+[2b1−2]−[11−2c]=[5073]
Find the value of a,b and c
⇒[a+2−13+b−14+1+22−2−c]=[5073]
⇒[a+1b+27−c]=[5073]
Comparing the corresponding elements
a+1=5⇒a=4b+2=0⇒b=−2−c=3⇒c=−3
Question 15
If A=[2a−35] and B=[−237b],C=[c9−1−11] and 5A+2B=C, find the value of a,b,c
Sol :
A=[2a−35] and B=[−237b],C=[c9−1−11]
and 5A + 2B = C
⇒[105a−1525]+[−46142b]=[c9−1−11]
⇒[10−45a+6−15+1425+2b]=[c9−1−11]
⇒[65a+6−125+2b]=[c9−1−11]
Comparing each term
5a+6=9
⇒5a=9−6=3
⇒a=35
⇒25+2b=−11
⇒2b=−11−25=−36
⇒b=−362=−18
c=6
Hence a=35,b=−18 and c=6
Comments
Post a Comment