ML Aggarwal Solution Class 10 Chapter 8 Matrices Exercise 8.2

 Exercise 8.2

Question 1

Given that M=[2012] and N=[2012],find M+2N

Sol :

M=[2012]

N=[2012]

M+2 N=[2012]+2[2012]

=[2012]+[4024]

=[2+40+0122+4]=[6016]


Question 2

If A=[2031] and B=[0123]

find 2A – 3B

Sol :
A=[2031]
B=[0123]

2 A3 B=2[2031]3[0123]

=[4062][0369]=[40036+629]

=[4307]


Question 3

If A=[1423] and B=[1231]
Compute 3A + 4B
Sol :
A=[1423]
B=[1231]

3 A+4 B=3[1423]+4[1231]

=[31269]+[48124]


=[3+412+86+129+4]=[7201813]

Question 4

Given A=[1423] and B=[4132]
(i) find the matrix 2A + B

(ii) find a matrix C such that C + B = [0000]
Sol :
A=[1423]
B=[4132]

(i) 2 A+B=2[1423]+[4132]

=[2846]+[4132]

=[24814362]=[2714]

(ii) C+B=[0000]

C=[0000]B=[0000][4132]

=[0(4)0(1)0(3)0(2)]=[4132]


Question 5

A=[1223] and B=[2112],C=[0321]

Find A + 2B – 3C

Sol :

A=[1223] and B=[2112],C=[0321]

∴ A + 2B – 3C

=[1223]+2[2112]3[0321]

=[1223]+[4224][0963]

=[1402292+263+4+3]=[39610]


Question 6

If A=[0112] and B=[1211]

Find the matrix X if :

(i) 3A + X = B

(ii) X – 3B = 2A

Sol :
A=[0112]
B=[1211]

(i) 3A + X = B

⇒ X = B – 3A

X=[1211]3[0112]

=[1211][0336]

=[102+31316]=[1545]


Question 7

Solve the matrix equation

[2150]3X=[7426]

Sol :

[2150]3X=[7426]

[2150][7426]=3X

X=13[9336]=[3112]


Question 8

If [1423]+2M=3[3203], find the matrix M

Sol :

[1423]+2M=3[3203]

2M =

3[3203][1423]=[9609][1423]

=[91640(2)93]=[82212]

M=12[82212]=[4116]

(Dividing by 2)


Question 9

A=[2620] and B=[3240],C=[4002]

Find the matrix X such that A + 2X = 2B + C

Sol :
A=[2620] and B=[3240],C=[4002]

Iet X=[xyzt]

A+2 X=2 B+C
2 X=2 B+C-A

2[xyzt]=2[3240]+[4002][2620]

=[6480]+[4002][2620]

=[6+424+0+68+020+20]=[41062]

2[xyzt]=[41062]

[xyzt]=12[41062]=[2531]


Question 10

Find X and Y if X + Y = [7025] and XY=[3003]
Sol :
X+Y=[7025]...(i)
XY=[3003]...(ii)

Adding (i) and (ii) we get, 2x=[7025]+[3003]

=[7+30+02+05+3]=[10028]

x=12[10028]=[5014]

Subtracting (ii) from (i) 

2y=[7025][3003]

2y=[73002053]=[4022]

y=12[4022]=[2011]

Hence, x=[5014],y=[2011]

Question 11

If 2[345x]+[1y01]=[70105]  Find the values of x and y
Sol :
2[345x]+[1y01]=[70105]

[68102x]+[1y01]=[70105]

[6+18+y10+02x+1]=[70105]

Comparing the corresponding elements,

8+y=0 then y=-8
2x+1=5 then 2x=5-1=4 
x=2

Hence, x=2, y=-8


Question 12

If 2[345x]+[1y01]=[z0105] Find the values of x and y
Sol :

2[345x]+[1y01]=[z0105]

[68102x]+[1y01]=[z0105]

[6+18+y10+02x+1]=[z0105]

[78+y102x+1]=[z0105]

Comparing, 
2x+1=5 
2x=51=4

x=42=2
8+y=0,
y=8
z=7
Hence x=2, y=-8, z=7

Question 13

If [521y+1]2[12x132]=[3872] Find the values of x and y

Sol :
[521y+1]2[12x132]=[3872]

[521y+1][24x264]=[3872]

[5224x+216y+1+4]=[3872]

[344x7y+5]=[3872]

Comparing the corresponding terms, we get 

4-4 x=-8 

4x=84

4x=12

x=124=3

and y+5=2

y=25=3

x=3,y=3


Question 14

If [a342]+[2b12][112c]=[5073]

Find the value of a,b and c

Sol :
[a342]+[2b12][112c]=[5073]

[a+213+b14+1+222c]=[5073]

[a+1b+27c]=[5073]

Comparing the corresponding elements

a+1=5a=4b+2=0b=2c=3c=3


Question 15

If A=[2a35] and B=[237b],C=[c9111] and 5A+2B=C, find the value of a,b,c

Sol :

A=[2a35] and B=[237b],C=[c9111]

and 5A + 2B = C

5[2a35]+2[237b]=[c9111]

[105a1525]+[46142b]=[c9111]

[1045a+615+1425+2b]=[c9111]

[65a+6125+2b]=[c9111]

Comparing each term

5a+6=9

5a=96=3

a=35

25+2b=11

2b=1125=36

b=362=18

c=6

Hence a=35,b=18 and c=6

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2