ML Aggarwal Solution Class 10 Chapter 8 Matrices Exercise 8.3
Exercise 8.3
Question 1
If A=[354−2] and B=[24] , is the product AB possible ? Give a reason if yes, find AB
Sol :
Yes, the product is possible because of
number of column in A = number of row in B
i.e., (2 x 2). (2 x 1) = (2 x 1) is the order of the matrix.
Question 2
If A=[2513],B=[1−1−32], find AB and BA, Is AB = BA ?
∴A×B=[2513]×[1−1−32]
=[2−15−2+101−9−1+6]=[−138−85]
and B×A=[1−1−32]×[2513]
=[2−15−3−6+2−15+6]
=[12−4−9]
Hence AB≠BA
Question 3
If P=[462−8],Q=[2−3−11]
Find 2PQ
2PQ=2[462−8]×[2−3−11]
=2[8−6−12+64+8−6−8]
=2[8−612−14]
=[4−1224−28]
Question 4
Given A=[1183] , evaluate A2−4A
Sol :
A=[1183]
A2−4A=[1183][1183]−4[1183]
=[1+81+38+248+9]−[443212]
=[943217]−[443212]
=[9−44−432−3217−12]
=[5005]
Question 5
If A=[3724],B=[0253] and C=[1−5−46]
Find AB – 5C
AB=[3724][0253]
=[3×0+7×53×2+7×32×0+4×52×2+4×3]
=[0+356+210+204+12]=[35272016]
5C=5[1−5−46]=[5−25−2030]
AB−5C=[35272016]−[5−25−2030]
=[305240−14]
Question 6
If A=[1221] and B=[2112] , find A(BA)
A=[1221]
B=[2112]
BA=[2112]×[1221]
=[2+24+11+42+2]=[4554]
A(BA)=[1221]×[4554]
=[4+105+88+510+4]=[14131314]
Question 7
Given matrices:
A=[2142] and B=[34−1−2],C=[−310−2]
ABC=[2142]×[34−1−2]×[−310−2]
=[6−18−212−216−4][−310−2]
=[561012]×[−310−2]
=[−15+05−12−30+010−24]=[−15−7−30−14]
ACB=[2142][−310−2]×[34−1−2]
=[−6+02−2−12+04−4]×[34−1−2]
=[−60−120]×[34−1−2]
=[−18+0−24+0−36+0−48+0]=[−18−24−36−48]
∴ABC≠ACB
Question 8
Evaluate: [4sin30∘2cos60∘sin90∘2cos0∘][4554]
Sol :
[4sin30∘2cos60∘sin90∘2cos0∘][4554]
sin30∘=12,cos60∘=12
∴[4×122×1212×1][4554]
=[2112][4554]
=[2×4+1×52×5+1×41×4+2×51×5+2×4]
=[8+510+44+105+8]=[13141413]
Question 9
If A=[−1324],B=[2−3−4−6] find the matrix AB + BA
AB=[−1324]×[2−3−4−6]
=[−2−123−184−16−6−24]=[−14−15+12−30]
BA=[2−3−4−6]×[−1324]
=[−2−66−124−12−12−24]=[−8−6−8−36]
∴AB+BA
=[−14−15−12−30]+[−8−6−8−36]
=[−14−8−15−6−12−8−30−36]=[−22−21−20−66]
Question 10
A=[1234] and B=[6111],C=[−2−301]
find each of the following and state if they are equal.
(i) CA + B
(ii) A + CB
Sol :
(i) CA + B
=[−11+6−16+13+14+1]=[−5−1545]
(ii) A+CB
=[1234]+[−2−301]×[6111]
=[1234]+[−12−3−2−30+10+1]
=[1234]+[−15−511]
=[1−152−53+14+1]=[−14−345]
We can say that CA+B≠A+CB
Question 11
If A=[1−22−1] and B=[32−21]
Find 2B – A²
Sol :
A=[1−22−1]
B=[32−21]
2B=2[32−21]
=[64−42]
A2=A×A=[1−22−1][1−22−1]
=[1−4−2+22−2−4+1]=[−300−3]
∴2B−A2=[64−42]−[−300−3]
=[6−(−3)4−0−4−02−(−3)]=[6+34−42+3]
=[94−45]
Question 12
If A=[1234] and B=[2142],C=[5174], compute
(i) A(B + C)
(ii) (B + C)A
Sol :
(i) A(B + C)
A(B+C)=[1234][2142]+[5174]
=[1234][2+51+14+72+4]
=[1234][72116]
=[7+222+1221+446+24]=[29146530]
(B+C)A=[72116]×[1234]
=[7+614+811+1822+24]=[13222946]
Question 13
If A=[1223] and B=[2132],C=[1331]
find the matrix C(B – A)
B−A=[2132]−[1223]=[1−11−1]
C(B−A)=[1331]×[1−11−1]
=[1+3−1−33+1−3−1]=[4−44−4]
Question 14
A=[1021] and B=[23−10]
Find A² + AB + B²
Sol :
Given that
A2=A×A=[1021]×[1021]
=[1×1+0×21×0+0×12×1+1×22×0+1×1]
=[1+00+02+20+1]=[1041]
A×B=[1021]×[23−10]
=[1×2+0×−11×3+0×02×2+1×−12×3+1×0]=[2336]
B2=B×B=[23−10]×[23−10]
=[2×2+3×(−1)2×3+3×0−1×2+0×(−1)−1×3+0×0]
=[4−36+0−2+0−3+0]=[16−2−3]
A2+AB+B2=[1041]+[2336]+[16−2−3]
=[1+2+10+3+64+3−21+6+−3]=[4954]
Question 15
If A=[210−2] and B=[41−3−2],C=[−32−14]
Find A² + AC – 5B
A2+AC−5B=[210−2][210−2]+[210−2][−32−14]−5[41−3−2]
(Subsitituting the values from question)
=[4+02−20+00+4]+[−6−14+40+20−8]−5[41−3−2]
=[4004]+[−782−8]−[205−15−10]
=[4−7−200+8−50+2+154−8+10]=[−233176]
Question 16
If A=[100−1] find A2 and A3 Also state that which of these is equal to A
Sol :
A=[100−1]
A2=A×A=[100−1][100−1]
=[1+00+00+00+1]=[1001]
A3=A2+A=[1001]×[100−1]
=[1+00+00+00−1]=[100−1]
From above, it is clear that A3=A
Question 17
If X=[41−12], show that 6X – X² = 9I Where I is the unit matrix.
=[246−612]−[156−63]
=[24−156−6−6−612−3]=[9009]
=9[1001]=9L=R.H.S
Hence proved
Question 18
Show that [1221] is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2
Solution =[1221]
or
X=[1221]
∴X2=[1221][1221]
=[1+42+22+24+1]=[5445]
Now X2−2X−3I
=[5445]−2[1221]−3[1001]
=[5445]−[2442]−[3003]
=[5−2−34−4+04−4−05−2−3]
=[0000]
∴X2−2X−3I=0
Hence proved
Question 19
Find the matrix X of order 2 × 2 which satisfies the equation
Sol :
[3724][0253]+2X=[1−5−46]
⇒[0+356+210+204+12]+2X=[1−5−46]
⇒[35272016]+2X=[1−5−46]
2X=−[35272016]+[1−5−4−6]=[−34−32−24−10]
X=12[−34−32−24−10]=[−17−16−12−5]
Question 20
If A=[11xx], find the value of x, so that A² – 0
=[1+x1+xx+x2x+x2]
∵A2=0
∴=[1+x1+xx+x2x+x2]=0=[0000]
Comparing 1+x=0⇒x=−1
Question 21
If [1300][2−1]=[x0] Find the value of x
Sol :
[1300][2−1]=[x0]
⇒[2−300]=[x0]
⇒[−10]=[x0]
Comparing the corresponding elements
x=-1
Question 22
(i) Find x and y if [−320−5][x2]=[−5y]
(ii) Find x and y if [2xxy3y][32]=[169]
Sol :
(i) [−320−5][x2]=[−5y]
⇒[−3x40−10]=[−5y]
Comparing the corresponding elements
-3x+4=-5
⇒−3x=−5−4=−9
∴x=−9−3=3
-10=y
⇒y=−10
Hence , x=3, y=-10
(ii) [2xxy3y][32]=[169]
⇒[2x×3+x×2y×3+3y×2]=[169]
⇒[6x+2x3y+6y]=[169]
⇒[8x9y]=[169]
Comparing, we get
8x=16
⇒x=168=2
and 9y=9
⇒y=99=1
Here x=2, y=1
Question 23
Find x and y if
[x+yy2xx−y][2−1]=[32]
Sol :
Given
⇒[2x+2y−y4x−x+y]=[32]
⇒[2x+y3x+y]=[32]
Question 24
If [1233][x00y]=[x090] find the values of x and y
⇒[x+00+2y3x+00+3y]=[x090]
⇒[x2y3x3y]=[x090]
Question 25
If [3425]=[abcd][1001] write down the values of a, b, c and d
Sol :
Given
⇒[3425]=[a+00+bc+00+d]
⇒[3425]=[abcd]
Comparing the corresponding elements
a = 3, b = 4, c = 2, d = 5
Question 26
Find the value of x given that A² = B
Where A=[21201] and
B=[4x01]
Sol :
A=[21201] and
B=[4x01]
A2=B
⇒[21201][21201]=[4x01]
⇒[2×2+12×02×12+12×10×2+1×00×12+1×1]=[4x01]
⇒[4+024+120+00+1]=[4x01]
⇒[43601]=[4x01]
Comparing the corresponding elements of two equal matrices, x=36
Question 27
If A=[2x01] and B=[43601], find the value of x, given that A2−B
Sol :
Given :
A2=[2x01][2x01]
=[4+02x+x0+00+1]=[43x01]
∵A2=B
∴[43x01]=[43601]
Corresponding the corresponding elements
3 x=36
⇒x=12
Hence x=12
Question 28
If A=[3x01] and B=[9160−y] find x and y when A2=B
Sol :
Given :
A=[3x01] and B=[9160−y] find x and y when A² = B
=[3x01]×[3x01]
=[93x+x01]=[94x01]
We have A2=B
Two matrices are equal if each and every corresponding element is equal.
Thus, [94x01]=[9160−y]
⇒4x=16 and 1=−y
⇒x=4 and y=−1
Question 29
Find x, y if [−2031][−12x]+3[−21]=2[y3]
Sol :
[−2×−1+0×2x3×−1+1×2x]+[−63]=[2y6]
[2−3+2x]+[−63]=[2y6]
[2−6−3+2x+3]=[2y6]
⇒[−42x]=[2y6]
⇒2x=6 and 2y=−4
⇒x=62 and y=−42
⇒x=3 and ⇒y=−2
Question 30
If [a110][43−32]=[b114c] find a,b and c
⇒[4a−33a+24+03+0]=[b114c]
Comparing the corresponding elements
3a+2=11
⇒3a=11−2=9
∴a=93=3
4a-3=b
⇒b=4×3−3=12−3=9
3=c
Question 31
If A=[140−1],B=[2x0−12] find the value of x if AB = BA
BA=[2x0−12][140−1]
=[2+08−x0+00+12]=[28−x012]
∵AB=BA
∴[2x−2012]=[28−x012]
Comparing the corresponding elements
x-2=8-x
⇒x+x=8+2⇒2x=10
∴x=102=5
Question 32
If A=[2312] find x and y so that A² – xA + yI
=[4+36+62+23+4]=[71247]
∵A2=x A+yI
⇒[71247]=x[2312]+y[1001]
⇒[71247]=[2x3xx2x]+[y00y]
=[2x+y3xx2x+y]
Comparing the corresponding elements 3x=12⇒x=4
2x+y=7
⇒2×4+y=7
⇒8+y=7⇒y=7−8=−1
Hence x=4, y=-1
Question 33
If P=[2639],Q=[3xy2]
find x and y such that PQ = 0
PQ=[2639][3xy2]
=[6+6y2x+129+9y3x+18]
∵PQ=0
∴[6+6y2x+129+9y3x+18]=[0000]
Comparing the corresponding elements
6+6 y=0
⇒6y=−6⇒y=−1
2x+12=0
⇒2x=−12⇒x=−6
Hence x=-6, y=-1
Question 34
Let M×[1102]=[12] where M is a matrix
Sol :
(i) M is the order of 1 x 2
let M = [x y]
⇒[x+0x+2y]=[12]
Comparing the corresponding elements x=1 and
x+2y=2
⇒1+2y=2
⇒2y=2−1=1⇒y=12
Hence x=1,y=12
∴M=[112]
Question 35
Given [21−34]X=[76]
(i) the order of the matrix X
(ii) the matrix X
Sol :
We have
(i) We see that 2×2×2×1=2×1
The order of X is 2×1
(ii) Let X=[xy]
So, [21−34][xy]=[76]⇒[2x+y−3x+4y]=[76]
2x+y=7..(i)
-3x+4y=6...(ii)
Multiplying (i) by 3 and (ii) by 2, and adding we get :
6x+3y=21−6x+8y=1211y=33
y=3
From (i) , 2x=7-3=4
x=2
So, X=[23]
Question 36
Solve the matrix equation : [41],X=[−48−12]
Sol :
[41],X=[−48−12]
Let matrix X = [x y]
Comparing the corresponding elements.
4x=-4
⇒x=−1
4y=8
⇒y=2
∴X=[−12]
Question 37
(i) If A=[2−1−45] and B=[−32] find the matrix C such that CA=B
(ii) If A=[2−1−45] and B=[0−3] find the matrix C such that CA=B
Sol :
(i) given
Let Matrix C=[xy]
∴AC=[2−1−45][xy]=[2x−y−4x+5y]
But AC=B
∴[2x−y−4x+5y]=[−32]
Comparing the corresponding elements.
2 x-y=-3...(i)
-4 x+5 y=2..(ii)
Multiplying (i) by 5 and (ii) by 1
$\begin{array}{l}
10 x-5 y=-15 \\
-4 x+5 y=2 \\
\hline 6 x=-13
\end{array}$
x=−136
Substituting the value of x in (i)
2(−136)−y=−3⇒−133−y=−3
−y=−3+133=−9+133=43
∴y=−43
∴ Matrix C=[−136−43]
(ii) A=[2−1−45] and B=[0,-3]
Let Matrix C=[x y]
Since the matrix A is 2×2 and B=7×2
∵CA=B
∴(xy)[2−1−45]=[0−3]
=(2 x-4 y-x+5 y)=[0-3]
Comparing
2x-4 y=0
⇒x−2y=0
∴x=2y
and −x+5y=−3⇒−2y+5y=−3
⇒3y=−3⇒y=−1
∴x=2y=2×(−1)=−2
Hence , C=[xy]=[−2−1]
Question 38
If A=[3−4−12] , find matrix B such that BA = I,where I is unity matrix of order 2
A=[3−4−12]
BA = I, where I is unity matrix of order 2
Let B=[abcd]
∴BA
=[abcd]×[3−4−12]
=[3a−b−4a+2b3c−d−4c+2d]
∴[3a−b−4a+2b3c−d−4c+2d]=[1001]
Comparing the corresponding terms, we get
3a−b=1,−4a+2b=0⇒2b=4a⇒b=2a
∴3a−b=1⇒3a−2a=1⇒a=1
and b=2a⇒b=2×1=2
∴a=1,b=2
and 3c−d=0⇒d=3c
−4c+2d=1⇒−4c+2×3c=1
⇒−4c+6c=1⇒2c=1⇒c=12
and d=3c=3×12=32
Hence a=1,b=2,c=12,d=32
∴ Matrix B=[121232]
Question 39
If B=[−425−1] and C=[17−147−13]
find the matrix A such that AB = C
and AB = C
Then AB=[abcd]×[−425−1]
=[−4a+5b2a−b−4c+5d2c−d]
∵AB=C
∴[−4a+5b2a−b−4c+5d2c−d]=[17−147−13]
Comparing corresponding elements, we get
∵−4a+5b=17...(i)
2a−b=−1...(ii)
−4c+5d=47...(iii)
2c−d=−13...(iv)
Multiplying (i) by 1 and (ii) by 2
-4a+5b=17
4a-2b=-2
Adding
3b=15⇒b=153=5
2a−b=−1⇒2a−5=−1⇒2a=−1+5
=4⇒a=42=2
∴a=2,b=5
Again multiplying (iii) by 1 and (iv) by 2 ,
-4 c+5 d=47
4 c-2 d=-26
Adding 3d=21⇒d=213=7
and 2c−d=−13⇒2c−7=−13
⇒2c=−13+7=−6⇒c=−62=−3
∴c=−3,d=7
Now matrix A=[25−37]
Comments
Post a Comment