ML Aggarwal Solution Class 10 Chapter 8 Matrices Exercise 8.3

 Exercise 8.3

Question 1

If A=[3542] and B=[24] , is the product AB possible ? Give a reason if yes, find AB

Sol :

Yes, the product is possible because of

number of column in A = number of row in B

i.e., (2 x 2). (2 x 1) = (2 x 1) is the order of the matrix.

AB=[3542][24]
=[3×2+5×44×2+(2)×4]
=[6+2088]=[260]


Question 2

If A=[2513],B=[1132], find AB and BA, Is AB = BA ?

Sol :
A=[2513]
B=[1132]

A×B=[2513]×[1132]

=[2152+10191+6]=[13885]

and B×A=[1132]×[2513]

=[21536+215+6]

=[1249]

Hence AB≠BA


Question 3

If P=[4628],Q=[2311]

Find 2PQ

Sol :
P=[4628]
Q=[2311]

2PQ=2[4628]×[2311]

=2[8612+64+868]

=2[861214]

=[4122428]


Question 4

Given A=[1183] , evaluate A24A

Sol :

A=[1183]

A24A=[1183][1183]4[1183]

=[1+81+38+248+9][443212]

=[943217][443212]

=[944432321712]

=[5005]


Question 5

If A=[3724],B=[0253] and C=[1546]

Find AB – 5C

Sol :
A=[3724],B=[0253] and C=[1546]

AB=[3724][0253]

=[3×0+7×53×2+7×32×0+4×52×2+4×3]

=[0+356+210+204+12]=[35272016]

5C=5[1546]=[5252030]

AB5C=[35272016][5252030]

=[30524014]


Question 6

If A=[1221] and B=[2112] , find A(BA)

Sol :

A=[1221]

B=[2112]

BA=[2112]×[1221]

=[2+24+11+42+2]=[4554]

A(BA)=[1221]×[4554]

=[4+105+88+510+4]=[14131314]


Question 7

Given matrices:

A=[2142] and B=[3412],C=[3102]

Find the products of (i) ABC (ii) ACB and state whether they are equal.
Sol :
A=[2142]
B=[3412]
C=[3102]

ABC=[2142]×[3412]×[3102]

=[6182122164][3102]

=[561012]×[3102]

=[15+051230+01024]=[1573014]


ACB=[2142][3102]×[3412]

=[6+02212+044]×[3412]

=[60120]×[3412]

=[18+024+036+048+0]=[18243648]

ABCACB


Question 8

Evaluate: [4sin302cos60sin902cos0][4554]

Sol :

[4sin302cos60sin902cos0][4554]

sin30=12,cos60=12

[4×122×1212×1][4554]

=[2112][4554]

=[2×4+1×52×5+1×41×4+2×51×5+2×4]

=[8+510+44+105+8]=[13141413]


Question 9

If A=[1324],B=[2346] find the matrix AB + BA

Sol :
A=[1324]
B=[2346]

AB=[1324]×[2346]

=[212318416624]=[1415+1230]

BA=[2346]×[1324]

=[266124121224]=[86836]

AB+BA

=[14151230]+[86836]

=[1481561283036]=[22212066]


Question 10

A=[1234] and B=[6111],C=[2301]

find each of the following and state if they are equal.

(i) CA + B

(ii) A + CB

Sol :

(i) CA + B

CA=[2301][1234]

=[11+616+13+14+1]=[51545]


(ii) A+CB

=[1234]+[2301]×[6111]

=[1234]+[123230+10+1]

=[1234]+[15511]

=[115253+14+1]=[14345]

We can say that CA+B≠A+CB


Question 11

If A=[1221] and B=[3221]

Find 2B – A²

Sol :

A=[1221]

B=[3221]

2B=2[3221]

=[6442]

A2=A×A=[1221][1221]

=[142+2224+1]=[3003]


2BA2=[6442][3003]

=[6(3)40402(3)]=[6+3442+3]

=[9445]


Question 12

If A=[1234] and B=[2142],C=[5174], compute

(i) A(B + C)

(ii) (B + C)A

Sol :

(i) A(B + C)

A=[1234]
B=[2142]
C=[5174]

A(B+C)=[1234][2142]+[5174]

=[1234][2+51+14+72+4]

=[1234][72116]

=[7+222+1221+446+24]=[29146530]

(B+C)A=[72116]×[1234]

=[7+614+811+1822+24]=[13222946]


Question 13

If A=[1223] and B=[2132],C=[1331]

find the matrix C(B – A)

Sol :
A=[1223]
B=[2132]
C=[1331]

BA=[2132][1223]=[1111]

C(BA)=[1331]×[1111]

=[1+3133+131]=[4444]


Question 14

A=[1021] and B=[2310]

Find A² + AB + B²

Sol :

Given that

A=[1021]
B=[2310]

A2=A×A=[1021]×[1021]

=[1×1+0×21×0+0×12×1+1×22×0+1×1]

=[1+00+02+20+1]=[1041]

A×B=[1021]×[2310]

=[1×2+0×11×3+0×02×2+1×12×3+1×0]=[2336]


B2=B×B=[2310]×[2310]

=[2×2+3×(1)2×3+3×01×2+0×(1)1×3+0×0]

=[436+02+03+0]=[1623]


A2+AB+B2=[1041]+[2336]+[1623]

=[1+2+10+3+64+321+6+3]=[4954]


Question 15

If A=[2102] and B=[4132],C=[3214]

Find A² + AC – 5B

Sol :
A=[2102]
B=[4132]
C=[3214]

A2+AC5B=[2102][2102]+[2102][3214]5[4132]

(Subsitituting the values from question)

=[4+0220+00+4]+[614+40+208]5[4132]

=[4004]+[7828][2051510]

=[47200+850+2+1548+10]=[233176]


Question 16

If A=[1001] find A2 and A3 Also state that which of these is equal to A

Sol :

A=[1001]

A2=A×A=[1001][1001]

=[1+00+00+00+1]=[1001]

A3=A2+A=[1001]×[1001]

=[1+00+00+001]=[1001]

From above, it is clear that A3=A


Question 17

If X=[4112], show that 6X – X² = 9I Where I is the unit matrix.

Sol :
X=[4112]

x2=x×x=[4112][4112]

=[1614+2421+4]=[15663]

L.H.S. 6XX2=6[4112][15663]

=[246612][15663]

=[24156666123]=[9009]

=9[1001]=9L=R.H.S

Hence proved


Question 18

Show that [1221]  is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2

Sol :
X² – 2X – 3I = 0

Solution =[1221]

or 

X=[1221]

X2=[1221][1221]

=[1+42+22+24+1]=[5445]

Now X22X3I

=[5445]2[1221]3[1001]

=[5445][2442][3003]

=[52344+0440523]

=[0000]

X22X3I=0

Hence proved


Question 19

Find the matrix X of order 2 × 2 which satisfies the equation

[3724][0253]+2X=[1546]

Sol :

[3724][0253]+2X=[1546]

[0+356+210+204+12]+2X=[1546]

[35272016]+2X=[1546]

2X=[35272016]+[1546]=[34322410]

X=12[34322410]=[1716125]


Question 20

If A=[11xx], find the value of x, so that A² – 0

Sol :
Given :
A=[11xx]
A2=[11xx][11xx]

=[1+x1+xx+x2x+x2]

A2=0

∴=[1+x1+xx+x2x+x2]=0=[0000]

Comparing 1+x=0x=1


Question 21

If [1300][21]=[x0] Find the value of x

Sol :

[1300][21]=[x0]

[2300]=[x0]

[10]=[x0]

Comparing the corresponding elements

x=-1


Question 22

(i) Find x and y if [3205][x2]=[5y]

(ii) Find x and y if [2xxy3y][32]=[169]

Sol :

(i) [3205][x2]=[5y]

[3x4010]=[5y]

Comparing the corresponding elements 

-3x+4=-5 

3x=54=9

x=93=3

-10=y 

y=10

Hence , x=3, y=-10


(ii) [2xxy3y][32]=[169]

[2x×3+x×2y×3+3y×2]=[169]

[6x+2x3y+6y]=[169]

[8x9y]=[169]

Comparing, we get

8x=16 

x=168=2

and 9y=9 

y=99=1

Here x=2, y=1


Question 23

Find x and y if

[x+yy2xxy][21]=[32]

Sol :

Given

[x+yy2xxy][21]=[32]

[2x+2yy4xx+y]=[32]

[2x+y3x+y]=[32]


Question 24

If [1233][x00y]=[x090]  find the values of x and y

Sol :
Given :
[1233][x00y]=[x090]

[x+00+2y3x+00+3y]=[x090]

[x2y3x3y]=[x090]


Question 25

If [3425]=[abcd][1001] write down the values of a, b, c and d

Sol :

Given

[3425]=[abcd][1001]

[3425]=[a+00+bc+00+d]

[3425]=[abcd]

Comparing the corresponding elements

a = 3, b = 4, c = 2, d = 5


Question 26

Find the value of x given that A² = B

Where A=[21201] and

B=[4x01]

Sol :

A=[21201] and

B=[4x01]

A2=B

[21201][21201]=[4x01]

[2×2+12×02×12+12×10×2+1×00×12+1×1]=[4x01]

[4+024+120+00+1]=[4x01]

[43601]=[4x01]

Comparing the corresponding elements of two equal matrices, x=36


Question 27

If A=[2x01] and B=[43601], find the value of x, given that A2B

Sol :

Given :

A2=[2x01][2x01]

=[4+02x+x0+00+1]=[43x01]

A2=B

[43x01]=[43601]

Corresponding the corresponding elements

3 x=36 

x=12

Hence x=12


Question 28

If A=[3x01] and B=[9160y] find x and y when A2=B

Sol :

Given : 

A=[3x01] and B=[9160y]  find x and y when A² = B

Now, A2=A×A

=[3x01]×[3x01]

=[93x+x01]=[94x01]

We have A2=B 

Two matrices are equal if each and every corresponding element is equal.

Thus, [94x01]=[9160y]

4x=16 and 1=y

x=4 and y=1


Question 29

Find x, y if [2031][12x]+3[21]=2[y3]

Sol :

[2×1+0×2x3×1+1×2x]+[63]=[2y6]

[23+2x]+[63]=[2y6]

[263+2x+3]=[2y6]

[42x]=[2y6]

2x=6 and 2y=4

x=62 and y=42

x=3 and y=2


Question 30

If [a110][4332]=[b114c] find a,b and c

Sol :
[a110][4332]=[b114c]

[4a33a+24+03+0]=[b114c]

Comparing the corresponding elements

3a+2=11 

3a=112=9

a=93=3

4a-3=b 

b=4×33=123=9

3=c


Question 31

If A=[1401],B=[2x012]  find the value of x if AB = BA

Sol :
AB=[1401][2x012]

BA=[2x012][1401]

=[2+08x0+00+12]=[28x012]

AB=BA

[2x2012]=[28x012]

Comparing the corresponding elements

x-2=8-x

x+x=8+22x=10

x=102=5


Question 32

If A=[2312] find x and y so that A² – xA + yI

Sol :
Given :
A2=[2312][2312]

=[4+36+62+23+4]=[71247]

A2=x A+yI

[71247]=x[2312]+y[1001]

[71247]=[2x3xx2x]+[y00y]

=[2x+y3xx2x+y]

Comparing the corresponding elements 3x=12x=4

2x+y=7

2×4+y=7

8+y=7y=78=1

Hence x=4, y=-1


Question 33

If P=[2639],Q=[3xy2]

find x and y such that PQ = 0

Sol :
Given :
P=[2639]
Q=[3xy2]

PQ=[2639][3xy2]

=[6+6y2x+129+9y3x+18]

∵PQ=0

[6+6y2x+129+9y3x+18]=[0000]

Comparing the corresponding elements 

6+6 y=0 

6y=6y=1

2x+12=0 

2x=12x=6

Hence x=-6, y=-1


Question 34

Let M×[1102]=[12]  where M is a matrix

(i) State the order of matrix M
(ii) Find the matrix M

Sol :

(i) M is the order of 1 x 2

let M = [x y]

[xy]×[1102]=[12]

[x+0x+2y]=[12]

Comparing the corresponding elements x=1 and 

x+2y=2 

1+2y=2

2y=21=1y=12

Hence x=1,y=12

M=[112]


Question 35

Given [2134]X=[76]

(i) the order of the matrix X

(ii) the matrix X

Sol :

We have

[2134],X=[76]

(i) We see that 2×2×2×1=2×1

The order of X is 2×1


(ii) Let X=[xy]

So, [2134][xy]=[76][2x+y3x+4y]=[76]

2x+y=7..(i)

-3x+4y=6...(ii)

Multiplying (i) by 3 and (ii) by 2, and adding we get :

6x+3y=216x+8y=1211y=33

y=3

From (i) , 2x=7-3=4

x=2

So, X=[23]


Question 36

Solve the matrix equation : [41],X=[4812]

Sol :

[41],X=[4812]

Let matrix X = [x y]

[41][x,y]=[4812]
[4x4yxy]=[4812]

Comparing the corresponding elements. 

4x=-4 

x=1

4y=8 

y=2

X=[12]


Question 37

(i) If A=[2145] and B=[32]  find the matrix C such that CA=B

(ii) If A=[2145] and B=[03] find the matrix C such that CA=B

Sol :

(i) given

A=[2145]
B=[32]

Let Matrix C=[xy]

AC=[2145][xy]=[2xy4x+5y]

But AC=B

[2xy4x+5y]=[32]

Comparing the corresponding elements.

2 x-y=-3...(i)

-4 x+5 y=2..(ii)

Multiplying (i) by 5 and (ii) by 1

$\begin{array}{l}

10 x-5 y=-15 \\

-4 x+5 y=2 \\

\hline 6 x=-13

\end{array}$

x=136

Substituting the value of x in (i)

2(136)y=3133y=3

y=3+133=9+133=43

y=43

Matrix C=[13643]


(ii) A=[2145] and B=[0,-3]

Let Matrix C=[x y]

Since the matrix A is 2×2 and B=7×2

CA=B

(xy)[2145]=[03]

=(2 x-4 y-x+5 y)=[0-3]

Comparing 

2x-4 y=0

x2y=0

x=2y

and x+5y=32y+5y=3

3y=3y=1

x=2y=2×(1)=2

Hence , C=[xy]=[21]


Question 38

If A=[3412] , find matrix B such that BA = I,where I is unity matrix of order 2

Sol :

A=[3412]

BA = I, where I is unity matrix of order 2

I=[1001]

Let B=[abcd]

BA

=[abcd]×[3412]

=[3ab4a+2b3cd4c+2d]

[3ab4a+2b3cd4c+2d]=[1001]

Comparing the corresponding terms, we get

3ab=1,4a+2b=02b=4ab=2a

3ab=13a2a=1a=1

and b=2ab=2×1=2

a=1,b=2

and 3cd=0d=3c

4c+2d=14c+2×3c=1

4c+6c=12c=1c=12

and d=3c=3×12=32

Hence a=1,b=2,c=12,d=32

Matrix B=[121232]


Question 39

If B=[4251] and C=[1714713]

find the matrix A such that AB = C

Sol :
B=[4251]
C=[1714713]

and AB = C

Let A=[abcd]

Then AB=[abcd]×[4251]

=[4a+5b2ab4c+5d2cd]

AB=C

[4a+5b2ab4c+5d2cd]=[1714713]

Comparing corresponding elements, we get

4a+5b=17...(i)

2ab=1...(ii)

4c+5d=47...(iii)

2cd=13...(iv)

Multiplying (i) by 1 and (ii) by 2

-4a+5b=17

4a-2b=-2


Adding 

3b=15b=153=5

2ab=12a5=12a=1+5

=4a=42=2

a=2,b=5

Again multiplying (iii) by 1 and (iv) by 2 ,

-4 c+5 d=47

4 c-2 d=-26

Adding  3d=21d=213=7

and 2cd=132c7=13

2c=13+7=6c=62=3

c=3,d=7

Now matrix A=[2537]

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2