ML Aggarwal Solution Class 10 Chapter 8 Matrices Exercise Test
Test
Question 1
Find the values of a and below
Sol :
$\left[\begin{array}{cc}a+3 & b^{2}+2 \\ 0 & -6\end{array}\right]=\left[\begin{array}{cc}2 a+1 & 3 b \\ 0 & b^{2}-5 b\end{array}\right]$
comparing the corresponding elements
a + 3 = 2a + 1
⇒ 2a – a =3 – 1
⇒ a = 2
b² + 2 = 3b
⇒ b² – 3b + 2 = 0
⇒ b² – b – 2b + 2 = 0
⇒ b (b – 1) – 2 (b – 1) = 0
⇒ (b – 1) (b – 2) = 0.
Either b – 1 = 0, then b = 1
or b – 2 = 0, then b = 2
Hence a = 2, b = 2 or 1
Question 2
Find a, b, c and d if $3\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}4 & a+b \\ c+d & 3\end{array}\right]+\left[\begin{array}{cc}a & 6 \\ -1 & 2 d\end{array}\right]$
Sol :
Given :
$3\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}4 & a+b \\ c+d & 3\end{array}\right]+\left[\begin{array}{cc}a & 6 \\ -1 & 2 d\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}3 a & 3 b \\ 3 c & 3 d\end{array}\right]=\left[\begin{array}{ll}4+a & a+b+6 \\ c+d-1 & 3+2 d\end{array}\right]$
Comparing the corresponding elements:
3a=4+a
$\Rightarrow 3 a-a=4$
$ \Rightarrow 2 a=4$
$\therefore a=2$
$3 b=a+b+6 \Rightarrow 3 b-b=2+6$
$\Rightarrow 2 b=8$
$\therefore b=4$
3d=3+2d
$\Rightarrow 3 d-2 d=3$
$\therefore d=3$
3c=c+d-1
$\Rightarrow 3 c-c=3-1$
2c=2
$\Rightarrow c=1$
Hence a=2, b=4, c=1, d=3
Question 3
Find $X$ if $Y=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$ and $2 X+Y=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]$
Sol :
Given :
$2 X+Y=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]$
$\Rightarrow 2 X=2 X+Y=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]-Y$
$\Rightarrow 2 X=\left[\begin{array}{rr}1 & 0 \\ -3 & 2\end{array}\right]-\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$
$=\left[\begin{array}{rl}1-3 & 0-2 \\ -3-1 & 2-4\end{array}\right]=\left[\begin{array}{ll}-2 & -2 \\ -4 & -2\end{array}\right]$
$X=\frac{1}{2}\left[\begin{array}{ll}-2 & -2 \\ -4 & -2\end{array}\right]=\left[\begin{array}{ll}-1 & -1 \\ -2 & -1\end{array}\right]$
Question 4
Determine the matrices A and B when
$A+2 B=\left[\begin{array}{cc}1 & 2 \\ 6 & -3\end{array}\right]$...(i)
$2 A-B=\left[\begin{array}{ll}2 & -1 \\ 2 & -1\end{array}\right]$...(ii)
Multiplying (i) by 1 and (ii) by 2
Question 5
$=\left[\begin{array}{rr}6 & 4 \\ -5 & 17\end{array}\right]$
Now $A(4 B-3 C)=\left[\begin{array}{rr}1 & 2 \\ -3 & 4\end{array}\right]\left[\begin{array}{rr}6 & 4 \\ -5 & 17\end{array}\right]$
$=\left[\begin{array}{rr}1 \times 6+2(-5) & 1 \times 4+2 \times 17 \\ -3 \times 6+4 \times(-5) & -3 \times 4+4 \times 17\end{array}\right]$
$=\left[\begin{array}{rr}6-10 & 4+34 \\ -18-20 & -12+68\end{array}\right]=\left[\begin{array}{rr}-4 & 38 \\ -38 & 56\end{array}\right]$
Question 6
If $A=\left[\begin{array}{ll}1 & 4 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right]$ and $C=\left[\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right]$ compute (AB)C = (CB)A ?
(AB) $\mathrm{C}=\left[\left[\begin{array}{ll}1 & 4 \\ 1 & 0\end{array}\right] \times\left[\begin{array}{ll}2 & 1 \\ 3 & -1\end{array}\right]\right]\left[\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right]$
$=\left[\begin{array}{ll}2+12 & 1-4 \\ 2+0 & 1+0\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right]$
$=\left[\begin{array}{rr}14 & -3 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right]$
$=\left[\begin{array}{rr}28+0 & 42-15 \\ 4+0 & 6+5\end{array}\right]=\left[\begin{array}{rr}28 & 27 \\ 4 & 11\end{array}\right]$
(CB) $\mathrm{A}=\left[\left[\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right]\left[\begin{array}{rr}2 & 1 \\ 3 & -1\end{array}\right]\right]\left[\begin{array}{ll}1 & 4 \\ 1 & 0\end{array}\right]$
$=\left[\begin{array}{ll}4+9 & 2-3 \\ 0+15 & 0-5\end{array}\right]\left[\begin{array}{ll}1 & 4 \\ 1 & 0\end{array}\right]$
$=\left[\begin{array}{ll}13 & -1 \\ 15 & -5\end{array}\right]\left[\begin{array}{ll}1 & 4 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}13-1 & 52+0 \\ 15-5 & 60+0\end{array}\right]$
$=\left[\begin{array}{ll}12 & 52 \\ 10 & 60\end{array}\right]$
It is clear from above that
(AB)≠(CB)A
Question 7
If $A=\left[\begin{array}{ll}3 & 2 \\ 0 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$ find the each of the following and state it
they are equal:
(i) $(A+B)(A-B)$
(ii) $A^{2}-B^{2}$
Sol :
Given :
$A=\left[\begin{array}{ll}3 & 2 \\ 0 & 5\end{array}\right]$
$B=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$
(i) (A+B)(A-B)
$=\left\{\left[\begin{array}{ll}3 & 2 \\ 0 & 5\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]\right\}\times\left\{\left[\begin{array}{ll}3 & 2 \\ 0 & 5\end{array}\right]-\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]\right\}$
$=\left[\begin{array}{ll}3+1 & 2+0 \\ 0+1 & 5+2\end{array}\right] \times\left[\begin{array}{ll}3-1 & 2-0 \\ 0-1 & 5-2\end{array}\right]$
$=\left[\begin{array}{ll}4 & 2 \\ 1 & 7\end{array}\right] \times\left[\begin{array}{cc}2 & 2 \\ -1 & 3\end{array}\right]$
$=\left[\begin{array}{ll}8-2 & 8+6 \\ 2-7 & 2+21\end{array}\right]=\left[\begin{array}{cc}6 & 14 \\ -5 & 23\end{array}\right]$
(ii) $\mathrm{A}^{2}-\mathrm{B}^{2}$
$=\left[\begin{array}{ll}3 & 2 \\ 0 & 5\end{array}\right] \times\left[\begin{array}{ll}3 & 2 \\ 0 & 5\end{array}\right]-\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right] \times\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$
$=\left[\begin{array}{ll}9+0 & 6+10 \\ 0+0 & 0+25\end{array}\right]-\left[\begin{array}{ll}1+0 & 0+0 \\ 1+2 & 0+4\end{array}\right]$
$=\left[\begin{array}{ll}9 & 16 \\ 0 & 25\end{array}\right]-\left[\begin{array}{ll}1 & 0 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}9-1 & 16-0 \\ 0-3 & 25-4\end{array}\right]$
$=\left[\begin{array}{cc}8 & 16 \\ -3 & 21\end{array}\right]$
We see that $(\mathrm{A}+\mathrm{B})(\mathrm{A}-\mathrm{B}) \neq \mathrm{A}^{2}-\mathrm{B}^{2}$
Question 8
If $A=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$ find $A^{2}-5 A-141$
Where I is unit matrix of order 2 x 2
Sol :
Given
$\therefore \mathrm{A}^{2}-5 \mathrm{~A}-14 \mathrm{I}=\left[\begin{array}{rr}29 & -25 \\ -20 & 24\end{array}\right]$
$-\left[\begin{array}{rr}15 \cdot & -25 \\ -20 & 10\end{array}\right]-14\left[\begin{array}{rr}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{rr}29 & -25 \\ -20 & 24\end{array}\right]-\left[\begin{array}{rr}15 & -20 \\ -20 & 10\end{array}\right]-\left[\begin{array}{rr}14 & 0 \\ 0 & 14\end{array}\right]$
$=\left[\begin{array}{ll}29-15-14 & -25+25-0 \\ -20+20+0 & 24-10-14\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Question 9
If $A=\left[\begin{array}{ll}3 & 3 \\ p & q\end{array}\right]$ and $A^{2}=0$ find $p$ and $q$
Sol :
Given :
$A=\left[\begin{array}{ll}3 & 3 \\ p & q\end{array}\right]$
$A^{2}=A \times A=\left[\begin{array}{ll}3 & 3 \\ p & q\end{array}\right]\left[\begin{array}{ll}3 & 3 \\ p & q\end{array}\right]$
$=\left[\begin{array}{ll}9+3 p & 9+3 q \\ 3 p+p q & 3 p+q^{2}\end{array}\right]$
But $A^{2}=0$
$\therefore\left[\begin{array}{ll}9+3 p & 9+3 q \\ 3 p+p q & 3 p+q^{2}\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Comparing the corresponding elements
9+3p=0
$ \Rightarrow 3 p=-9 \Rightarrow p=-3$
9+3q=0
$\Rightarrow 3 q=-9 \Rightarrow q=-3$
Hence p=-3, q=-3
Question 10
If $A=\left[\begin{array}{cc}\frac{3}{5} & \frac{2}{5} \\ x & y\end{array}\right]$ and $A^{2}=1,$ find x, y
Sol :
Given :
$A=\left[\begin{array}{ll}\frac{3}{5} & \frac{2}{5} \\ x & y\end{array}\right]$
$A^{2}=A \times A=\left[\begin{array}{ll}\frac{3}{5} & \frac{2}{5} \\ x & y\end{array}\right]\left[\begin{array}{ll}\frac{3}{5} & \frac{2}{5} \\ x & y\end{array}\right]$
$=\left[\begin{array}{ll}\frac{9}{25}+\frac{2}{5} x & \frac{6}{25}+\frac{2}{5} y \\ \frac{3}{5} x+x y & \frac{2}{5} x+y^{2}\end{array}\right]$
But $\mathrm{A}^{2}=\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll}\frac{9}{25}+\frac{2}{5} x & \frac{6}{25}+\frac{2}{5} y \\ \frac{3}{5} x+x y & \frac{2}{5} x+y^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Comparing the corresponding elements,
$\frac{9}{25}+\frac{2}{5} x=1$
$ \Rightarrow \frac{2}{5} x=1-\frac{9}{25}=\frac{16}{25}$
$x=\frac{16}{25} \times \frac{5}{2}=\frac{8}{5}$
$\frac{6}{25}+\frac{2}{5} y=0 $
$\Rightarrow \frac{2}{5} y=\frac{-6}{25}$
$y=\frac{-6}{25} \times \frac{5}{2}=\frac{-3}{5}$
Hence $x=\frac{8}{5}, y=\frac{-3}{5}$
Question 11
If $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ find a, b, c and d
Sol :
$\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
$\Rightarrow\left[\begin{array}{rr}-a+0 & -b+0 \\ 0+c & 0+d\end{array}\right]=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
$\Rightarrow\left[\begin{array}{rr}-a & -b \\ c & d\end{array}\right]=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
Comparing the corresponding elements
$-a=1 \Rightarrow a=-1$
$-b=0 \Rightarrow b=0$
$c=0$ and $d=-1$
Hence a=-1, b=0, c=0, d=-1
Question 12
Find a and b if
Sol :
Given :
$\left[\begin{array}{ll}a-b & b-4 \\ b+4 & a-2\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{cc}-2 & -2 \\ 14 & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}2 a-2 b+0 & 0+2 a-2 b \\ 2 b+8+0 & 0+2 a-4\end{array}\right]=\left[\begin{array}{rr}-2 & -2 \\ 14 & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}2 a-2 b & 2 a-2 b \\ 2 b+8 & 2 a-4\end{array}\right]=\left[\begin{array}{rr}-2 & -2 \\ 14 & 0\end{array}\right]$
Comparing the corresponding elements
$2 a-4=0
$ \Rightarrow 2 a=4 \Rightarrow a=2$
2 a-2 b=-2
$\Rightarrow 2 \times 2-2 b=-2$
$\Rightarrow 4-2 b=-2 $
$\Rightarrow-2 b=-2-4=-6$
$\Rightarrow b=3$
Hence a=2, b=3
Question 13
If $A=\left[\begin{array}{cc}\sec 60^{\circ} & \cos 90^{\circ} \\ -3 \tan A 5^{\circ} & \sin 90^{\circ}\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & \cos 45^{\circ} \\ -2 & 3 \sin 90^{\circ}\end{array}\right]$
Find (i) 2A – 3B (ii) A² (iii) BA
Sol :
Given
$A=\left[\begin{array}{ll}\sec 60^{\circ} & \cos 90^{\circ} \\ -3 \tan 45^{\circ} & \sin 90^{\circ}\end{array}\right]=\left[\begin{array}{rr}2 & 0 \\ -3 & 1\end{array}\right]$
$\left(\because \sec 60^{\circ}\right)=2, \cos 90^{\circ}=0, \tan 45^{\circ}=1 \left.\sin 90^{\circ}=1\right)$
$B=\left[\begin{array}{rr}0 & \cot 45^{\circ} \\ -2 & 3 \sin 90^{\circ}\end{array}\right]=\left[\begin{array}{rr}0 & 1 \\ -2 & 3\end{array}\right]$
$\left(\because \cot 45^{\circ}=1\right)$
(i) 2A-3B
$=2\left[\begin{array}{rr}2 & 0 \\ -3 & 1\end{array}\right]-3\left[\begin{array}{rr}0 & 1 \\ -2 & 3\end{array}\right]$
$=\left[\begin{array}{rr}4 & 0 \\ -6 & 2\end{array}\right]-\left[\begin{array}{rr}0 & 3 \\ -6 & 9\end{array}\right]$
$=\left[\begin{array}{rr}4-0 & 0-3 \\ -6+6 & 2-9\end{array}\right]=\left[\begin{array}{ll}4 & -3 \\ 0 & -7\end{array}\right]$
(ii) $A^{2}=A \times A=\left[\begin{array}{rr}2 & 0 \\ -3 & 1\end{array}\right]\left[\begin{array}{rr}2 & 0 \\ -3 & 1\end{array}\right]$
$=\left[\begin{array}{rr}4+0 & 0+0 \\ -6-3 & 0+1\end{array}\right]=\left[\begin{array}{rr}4 & 0 \\ -9 & 1\end{array}\right]$
(iii) $\mathrm{BA}=\left[\begin{array}{rr}0 & 1 \\ -2 & 3\end{array}\right]\left[\begin{array}{rr}2 & 0 \\ -3 & 1\end{array}\right]$
$=\left[\begin{array}{rr}0-3 & 0+1 \\ -4-9 & 0+3\end{array}\right]=\left[\begin{array}{ll}-3 & 1 \\ -13 & 3\end{array}\right]$
Comments
Post a Comment