ML Aggarwal Solution Class 9 Chapter 1 Rational and Irrational Numbers Exercise 1.4
Exercise 1.4
Question 1
(i) $=\sqrt{45}-3 \sqrt{20}+4 \sqrt{5}$
$=\sqrt{9 \times 5}-3 \sqrt{4 \times 5}+4 \sqrt{5}$
$=\sqrt{9} \sqrt{5}-3 \sqrt{4} \sqrt{5}+4 \sqrt{5}$
$=3 \sqrt{5}-3 \times 2 \sqrt{5}+4 \sqrt{5}$
$=3 \sqrt{5}-6 \sqrt{5}+4 \sqrt{5}$
$=(3-6+4) \sqrt{5}$
$=(7-6) \sqrt{5}$
$=\sqrt{5}$
(ii) $=3 \sqrt{3}+2 \sqrt{27}+\frac{7}{\sqrt{3}}$
$=3 \sqrt{3}+2 \sqrt{9 \times 3}+\frac{7}{\sqrt{3}}$
$=3 \sqrt{3}+2 \times \sqrt{9} \sqrt{3}+\frac{7}{\sqrt{3}}$
$=3 \sqrt{3}+2 \times 3 \sqrt{3}+\frac{7}{\sqrt{3}}$
$=3 \sqrt{3}+6 \sqrt{3}+\frac{7}{\sqrt{3}}$
$=(3+6) \sqrt{3}+\frac{7}{\sqrt{3}}$
$=9 \sqrt{3}+\frac{7}{\sqrt{3}}$
Multiplying and Dividing by "√3"
$=9 \sqrt{3}+\frac{7}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$=9 \sqrt{3}+\frac{7 \sqrt{3}}{3}$
By cross multiplying
$=\frac{3 \times 9 \sqrt{3}+7 \sqrt{3}}{3}$
$=\frac{27 \sqrt{3}+7 \sqrt{3}}{3}$
$=\frac{(27+7) \sqrt{3}}{3}$
$=\frac{34 \sqrt{3}}{3}$
(iii) $6 \sqrt{5} \times 2 \sqrt{5}$
$6 \times 2 \times \sqrt{5} \cdot \sqrt{5}$
$=12 \times(\sqrt{5})^{2}$
$=12 \times 5$
$=60$
(iv) $8 \sqrt{15} \div 2 \sqrt{3}$
$\frac{8 \sqrt{15}}{2 \sqrt{3}}=\frac{8 \sqrt{5} \sqrt{3}}{2 \sqrt{3}}$
$=4 \sqrt{5}$
(v) $\frac{\sqrt{24}}{8}+\frac{\sqrt{54}}{9}$
Sol :
$\frac{\sqrt{6 \times 4}}{8}+\frac{\sqrt{9 \times 6}}{9}$
$=\frac{\sqrt{6} \cdot \sqrt{4}}{8}+\frac{\sqrt{9} \cdot \sqrt{6}}{9}$
$=\frac{2 \sqrt{6}}{8}+\frac{3 \sqrt{6}}{9}$
$=\frac{1 \cdot \sqrt{6}}{4}+\frac{1 \cdot \sqrt{6}}{3}$
$=\sqrt{6}\left[\frac{1}{4}+\frac{1}{3}\right]$
$=\sqrt{6}\left[\frac{3+4}{12}\right]$ [∵LCM of 4 and 3 is 12]
$=\frac{7 \sqrt{6}}{{12}}$
(vi) $\frac{3}{\sqrt{8}}+\frac{1}{\sqrt{2}}$
Sol :
$\frac{3}{\sqrt{2 \times 4}}+\frac{1}{\sqrt{2}}$
$=\frac{3}{\sqrt{2} \cdot \sqrt{4}}+\frac{1}{\sqrt{2}}$
$=\frac{3}{2 \sqrt{2}}+\frac{1}{\sqrt{2}}$
$=\frac{1}{\sqrt{2}}\left(\frac{3}{2}+1\right)$
$=\frac{1}{\sqrt{2}}\left(\frac{3+2}{2}\right)$ [∵LCM of 2 and 1 is 2]
$=\frac{1}{\sqrt{2}}\left(\frac{5}{2}\right)$
$=\frac{5}{2 \sqrt{2}}$
Multiply and Divide by '√2'
$=\frac{5}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$
$=\frac{5 \sqrt{2}}{2 \cdot \sqrt{2} \times \sqrt{2}}$
$=\frac{5 \sqrt{2}}{2(\sqrt{2})^{2}}$
$=\frac{5 \sqrt{2}}{2 \cdot 2}$
$=\frac{5 \sqrt{2}}{4}$
Question 2
Sol :
(i) $(5+\sqrt{7})(2+\sqrt{5})$
Sol :
$=5 \times 2+5 \sqrt{5}+2 \sqrt{7}+\sqrt{7} \cdot \sqrt{5}$
$=10+5 \sqrt{5}+2 \sqrt{7}+\sqrt{7 \times 5}$
$=10+5 \sqrt{5}+2 \sqrt{7}+\sqrt{35}$
(ii) $(5+\sqrt{5})(5-\sqrt{5})$
$=(5)^{2}-(\sqrt{5})^{2}$
$=25-5$
$=20$
(iii) $(\sqrt{5}+\sqrt{2})^{2}$
$=(\sqrt{5})^{2}+(\sqrt{2})^{2}+2 \cdot \sqrt{5} \cdot \sqrt{2}$
$=5+2+2 \sqrt{5 \times 2}$
$=5+2+2 \sqrt{10}$
$=7+2 \sqrt{10}$
(iv) $(\sqrt{3}-\sqrt{7})^{2}$
$=(\sqrt{3})^{2}+(\sqrt{7} \cdot)^{2}-2 \cdot \sqrt{3} \cdot \sqrt{7}$
$=3+7-2 \sqrt{3 \times 7}$
$=10-2 \sqrt{21}$
(v) $(\sqrt{2}+\sqrt{3})(\sqrt{5}+\sqrt{7})$
$=\sqrt{2} \cdot \sqrt{5}+\sqrt{2} \cdot \sqrt{7}+\sqrt{3} \cdot \sqrt{5}+\sqrt{3} \cdot \sqrt{7}$
$=\sqrt{2 \times 5}+\sqrt{2 \times 7}+\sqrt{3 \times 5}+\sqrt{3 \times 7}$
$=\sqrt{10}+\sqrt{14}+\sqrt{15}+\sqrt{21}$
(vi) $(4+\sqrt{5})(\sqrt{3}-\sqrt{7})$
$=4 \sqrt{3}-4 \sqrt{7}+\sqrt{5} \cdot \sqrt{3}-\sqrt{5} \cdot \sqrt{7}$
$=4 \sqrt{3}-4 \sqrt{7}+\sqrt{5 \times 3}-\sqrt{5 \times 7}$
$=4 \sqrt{3}-4 \sqrt{7}+\sqrt{15}-\sqrt{35}$
Question 3
Sol :
$=\sqrt{4 \times 2}+\sqrt{25 \times 2}+\sqrt{36 \times 2}+\sqrt{49 \times 2}$
$=\sqrt{4} \cdot \sqrt{2}+\sqrt{25} \cdot \sqrt{2}+\sqrt{36} \cdot \sqrt{2}+\sqrt{49} \cdot \sqrt{2}$
$=2 \sqrt{2}+5 \sqrt{2}+6 \sqrt{2}+7 \sqrt{2}$
$=(2+5+6+7) \sqrt{2}$
$=20 \times \sqrt{2}$
$=20 \times 1 \cdot 414$
=28.28
(ii) $3 \sqrt{32}-2 \sqrt{50}+4 \sqrt{128}-20 \sqrt{18}$
$=3 \sqrt{16 \times 2}-2 \sqrt{25 \times 2}+4 \sqrt{64 \times 2}-20 \sqrt{9 \times 2}$
$=3 \times 4 \sqrt{2}-2 \times 5 \sqrt{2}+4 \times 8 \sqrt{2}-20 \times 3 \sqrt{2}$
$=12 \sqrt{2}-10 \sqrt{2}+32 \sqrt{2}-60 \sqrt{2}$
$=(12-10+32-60) \sqrt{2}$
$=-26 \times \sqrt{2}$
$=-26 \times 1.414$
=-36.764
Question 4
Sol :
(i) $\sqrt{27}+\sqrt{75}+\sqrt{108}-\sqrt{243}$
$\sqrt{9 \times 3}+\sqrt{25 \times 3}+\sqrt{36 \times 3}-\sqrt{81 \times 3}$
$=3 \sqrt{3}+5 \sqrt{3}+6 \sqrt{3}-9 \sqrt{3}$
$=(3+5+6-9) \sqrt{3}$
$=(14-9) \sqrt{3}$
$=5 \times \sqrt{3}$
$=5 \times 1.732$
=8.66
(ii) $5 \sqrt{12}-3 \sqrt{48}+6 \sqrt{75}+7 \sqrt{108}$
Sol :
$=5 \sqrt{4 \times 3}-3 \sqrt{16 \times 3}+6 \sqrt{25 \times 3}+7 \sqrt{36 \times 3}$
$=5 \times 2 \sqrt{3}-3 \times 4 \sqrt{3}+6 \times 5 \sqrt{3}+7 \times 6 \sqrt{3}$
$=10 \sqrt{3}-12 \sqrt{3}+30 \sqrt{3}+42 \sqrt{3}$
$=(10-12+30+42) \sqrt{3}$
$=(82-12) \sqrt{3}$
$=70 \times \sqrt{3}$
$=70 \times 1.732$
=121.24
Question 5
(i) $\sqrt{\frac{4}{9}},-\frac{3}{70}, \sqrt{\frac{7}{25}}, \sqrt{\frac{16}{5}}$
Sol :
$\sqrt{\frac{4}{9}}=\frac{\sqrt{4}}{\sqrt{9}}$
$=\frac{2}{3}$
It is in the form of $\frac{p}{q}$and p, q are integers
Therefore $\sqrt{\frac{4}{9}}$ is a rational number
$\Rightarrow \frac{-3}{70}$ is a rational number
$\Rightarrow \sqrt{\frac{7}{25}}=\frac{\sqrt{7}}{\sqrt{25}}$
$=\frac{\sqrt{7}}{5}$
Since $\sqrt{7}$ is not an Integer
Therefore, $\sqrt{\frac{7}{25}}$ is an Irrational number
$\sqrt{\frac{16}{5}}=\frac{\sqrt{16}}{\sqrt{5}}$
$=\frac{4}{\sqrt{5}}$. Since $\sqrt{5}$ is not an Integer
Therefore, $\sqrt{\frac{16}{5}}$ is an Irrational number
(ii) $-\sqrt{\frac{2}{49}}, \frac{3}{200}, \sqrt{\frac{25}{3}},-\sqrt{\frac{49}{16}}$
Sol :
$-\sqrt{\frac{2}{49}}=-\frac{\sqrt{2}}{\sqrt{49}}$
$=-\frac{\sqrt{2}}{7}$. Since $\sqrt{2}$ is not an Integer
Therefore, $-\sqrt{\frac{2}{49}}$ is an Irrational number
$\frac{3}{200}$. It is in the form of $\frac{p}{q}$ and p, q are integers. So, it is a rational number
$\sqrt{\frac{25}{3}}=\frac{\sqrt{25}}{\sqrt{3}}$
$=\frac{5}{\sqrt{3}} \cdot$ since $\sqrt{3}$ is not an integer
Therefore, $\sqrt{\frac{25}{3}}$ is an irrational number
$-\sqrt{\frac{49}{16}}=-\frac{\sqrt{49}}{\sqrt{16}}$
$=-\frac{7}{4}$
Therefore, $-\sqrt{\frac{49}{16}}$ is a rational number
Question 6
(i) $-3 \sqrt{2}$
Sol :
Since $\sqrt{2}$ is an lrrational number
Therefore, $-3 \sqrt{2}$ will change into non-terminating , non-recurring decimal
(ii) $\sqrt{\frac{256}{81}}$
Sol :
$\frac{\sqrt{256}}{\sqrt{81}}=\frac{16}{9}$
$=1.77777\overline{7}$
Therefore, $\sqrt{\frac{256}{81}}$ will not change into non-terminating, non - recurring decimal
(iii) $\sqrt{27 \times 16}$
Sol :
$\sqrt{27} \times \sqrt{16}=\sqrt{9 \times 3} \times 4$
$=4 \times 3 \sqrt{3}$
$=12 \sqrt{3}$
$\therefore \sqrt{3}$ is an Irrational number
Therefore, $\sqrt{27 \times 16}$ will change into non-terminating, non-recurring decimal
(iv) $\sqrt{\frac{5}{36}}$
Sol :
$\frac{\sqrt{5}}{\sqrt{36}}=\frac{\sqrt{5}}{6}$
$\because \sqrt{5}$ is an Irrational number
Therefore, $\sqrt{\frac{5}{36}}$ will change into non-terminating ,non - recurring decimal
(iv) $-\frac{2}{7} \sqrt[3]{5}$
Sol :
Since $\sqrt[3]{5}$ is an lrrational number
Therefore, $\frac{-2}{7} \sqrt[3]{5}$ is also an Irrational number
(Note: Product of rational and Irrational number is irrational)
(v) $(2-\sqrt{3})(2+\sqrt{3})$
Sol :
$=2 \times 2+2 \sqrt{3}-2 \sqrt{3}-(\sqrt{3})^{2}$
=4-3=1
Therefore $(2-\sqrt{3})(2+\sqrt{3})$ is a rational number
(vi) $(3+\sqrt{5})^{2}$
Sol :
$=(3)^{2}+(\sqrt{5})^{2}+2 \times 3 \times \sqrt{5}$
$=9+5+6 \sqrt{5}$
$=14+6 \sqrt{5}$
Since $\sqrt{5}$ is an Irrational number
$(3+\sqrt{5})^{2}$ is also an Irrational number
(vii) $\left(\frac{2}{5} \sqrt{7}\right)^{2}$
Sol :
$\left(\frac{2}{5}\right)^{2} \cdot(\sqrt{7})^{2}$
$=\frac{4}{25} \times 7$
$=\frac{28}{25}$
Therefore, $\left(\frac{2}{5} \sqrt{7}\right)^{2}$ is a rational number
(viii) $(3-\sqrt{6})^{2}$
Sol :
$(3)^{2}+(\sqrt{6})^{2}-2 \times 3 \times \sqrt{6}$
$=9+6-6 \sqrt{6}$
$=15-6 \sqrt{6}$
Since $\sqrt{6}$ is an Irrational number $(3-\sqrt{6})^{2}$ is also an irrational . number
Question 7
Question 8
(i) $\sqrt[3]{2}$
Sol :
Suppose that $\sqrt[3]{2}=\frac{p}{q}$, where p, q are integers , q>0, p and q have no common factors (except 1)
$2=\left[\frac{p}{q}\right]^{3}$
$p^{3}=2 q^{3}$...(1)
As 2 divides $2 q^{3} \Rightarrow 2$ divides $p^{3}$
2 divides p
Let p=2k, where k is an integer
Substituting this value of 'p' in (1), we get
$(2 k)^{3}=2 q^{3}$
$8k^{3}=2 q^{3}$
$4 k^{3}=q^{3}$
As 2 divides $4 k^{3} \Rightarrow 2$ divides $q^{3}$
2 divides q
Thus p and q have a common factor '2'
This contradicts that p and q have no common factor (except 1)
Therefore , $\sqrt[3]{2}$ is an irrational number
(ii) $\sqrt[3]{3}$
Sol :
Suppose that $\sqrt[3]{3}=\frac{p}{q}$, where p, q are integers, q>0 , p and q have no common factors (except 1)
$3=\left(\frac{p}{q}\right)^{3}$
$p^{3}=3 q^{3}$...(1)
As 3 divides $3 q^{3} \Rightarrow 3$ divides $p^{3}$
3 divides p
Let p=3k, Where k is an Integer
Substituting this value of 'p' in 0 , We get
$(3 k)^{3}=3 q^{3}$
$27 k^{3}=3 q^{3}$
$9 k^{3}=q^{3}$
As 3 divides $9 K^{3} \Rightarrow 3$ divides $q^{3}$
3 divide q
Thus p and q have a common factor '3'
This contradicts that p and q have no common factor (except 1)
Therefore $\sqrt[3]{3}$ is an Irrational number
(iii) $\sqrt[4]{5}$
Sol :
Suppose that $\sqrt[4]{5}=\frac{p}{q}$, where p, q are integers , q>0, p and q have no common factors (except 1)
$5=\left(\frac{p}{q}\right)^{4}$
$p^{4}=5 q^{4}$...(1)
As 5 divides $5 q^{4} \Rightarrow 5$ divides $p^{4}$
5 divides p
Let p=5k , where k is an integer
Substituting this value of 'p' in (1) , we get
$(5k)^{4}=5 q^{4}$
$625 \mathrm{k}^{4}=5 q^{4}$
$125 k^{4}=q^{4}$
As 5 divides $125 \mathrm{~k}^{4} \Rightarrow 5$ divides $q^{4}$
5 divides q
Thus p and q have a common factor "5"
This contradicts that p and q have no common factors (except 1)
Therefore, $\sqrt[4]{5}$ is an Irrational number.
Question 9
(i) $2 \sqrt{3}, \frac{3}{\sqrt{2}},-\sqrt{7}, \sqrt{15}$
Sol :
$\sqrt{4 \times 3}=\sqrt{12}$
$\frac{3}{\sqrt{2}}=\sqrt{\frac{9}{2}}$
$\sqrt{4 \cdot 5}$
$\therefore \sqrt{12}, \sqrt{4 \cdot 5},-\sqrt{7}, \sqrt{15}$
$-\sqrt{7}<\sqrt{4 \cdot 5}<\sqrt{12}<\sqrt{15}$
The greatest real number is $\sqrt{15}$
The smallest real number is $-\sqrt{7}$
(ii) $-3 \sqrt{2}, \frac{9}{\sqrt{5}},-4, \frac{4}{3} \sqrt{5}, \frac{3}{2} \sqrt{3}$
Sol :
$-3 \sqrt{2}=-\sqrt{9 \times 2}$
$=-\sqrt{18}$
$\frac{9}{\sqrt{5}}=\sqrt{\frac{81}{5}}$
$=\sqrt{16.2}$
$-4=-\sqrt{16}$
$\frac{4}{3} \sqrt{5}=\sqrt{\frac{16 \times 5}{9}}$
$=\sqrt{\frac{80}{9}}$
$=\sqrt{8.89}$
$\frac{3}{2} \sqrt{3}=\sqrt{\frac{9 \times 3}{4}}$
$=\sqrt{\frac{27}{4}}$
$=\sqrt{6.75}$
$\therefore-\sqrt{18}, \sqrt{16.2}, \sqrt{8.89},-\sqrt{16}, \sqrt{6.75}$
$-3 \sqrt{2}<-4<\frac{3}{2} \sqrt{3}<\frac{4}{3} \sqrt{5}<\frac{9}{\sqrt{5}}$
The greatest real number is $\frac{9}{\sqrt{5}}$
The smallest real number is $-3 \sqrt{2}$
Question 10
(i) $3 \sqrt{2}, 2 \sqrt{3}, \sqrt{15}, 4$
Sol :
White all the numbers as square roots under one radical
$3 \sqrt{2}=\sqrt{9} \times \sqrt{2}=\sqrt{18}$
$2 \sqrt{3}=\sqrt{4} \times \sqrt{3}=\sqrt{12}$
$\sqrt{15}=\sqrt{15}$
$4=\sqrt{16}$
Since 12<15<16<18
$\Rightarrow \sqrt{12}<\sqrt{15}<\sqrt{16}<\sqrt{18}$
$\Rightarrow 2 \sqrt{3}<\sqrt{15}<4<3 \sqrt{2}$
Hence, the given numbers in ascending orders are
$2 \sqrt{3}, \sqrt{15}, 4,3 \sqrt{2}$
(ii) $3 \sqrt{2}, 2 \sqrt{8}, 4, \sqrt{50}, 4 \sqrt{3}$
Sol :
Write an the numbers as square roots under one radical
$3 \sqrt{2}=\sqrt{9} \times \sqrt{2}=\sqrt{18}$
$2 \sqrt{8}=\sqrt{4} \times \sqrt{8}=\sqrt{32}$
$4=\sqrt{16}$
$\sqrt{50}=\sqrt{50}$
$4 \sqrt{3}=\sqrt{16} \times \sqrt{3}=\sqrt{48}$
Since 16<18<32<48<50
$\Rightarrow \sqrt{16}<\sqrt{18}<\sqrt{32}<\sqrt{48}<\sqrt{50}$
$\Rightarrow 4<3 \sqrt{2}<2 \sqrt{8}<4 \sqrt{3}<\sqrt{50}$
Question 11
(i) $\frac{9}{\sqrt{2}}, \frac{3}{2} \sqrt{5}, 4 \sqrt{3}, 3 \sqrt{\frac{6}{5}}$
Sol :
Write all the numbers as square roots under one radical
$\frac{9}{\sqrt{2}}=\sqrt{\frac{81}{2}}=\sqrt{40.5}$
$\frac{3}{2} \sqrt{5}=\sqrt{\frac{9}{4}} \times \sqrt{5}=\sqrt{\frac{45}{4}}=\sqrt{11 \cdot 25}$
$4 \sqrt{3}=\sqrt{16} \times \sqrt{3}=\sqrt{48}$
$3 \sqrt{\frac{6}{5}}=\sqrt{9} \times \sqrt{\frac{6}{5}}=\sqrt{\frac{54}{5}}=\sqrt{10.8}$
Since 48>40.5>11.25>10.8
$\sqrt{48}>\sqrt{40.5}>\sqrt{11.25}>\sqrt{10.8}$
$4 \sqrt{3}>\frac{9}{\sqrt{2}}>\frac{3}{2} \sqrt{5}>3 \sqrt{\frac{6}{5}}$
Hence, the given numbers in descending orders are $4 \sqrt{3}, \frac{9}{\sqrt{2}}, \frac{3}{2} \sqrt{5}, 3 \sqrt{\frac{6}{5}}$
(ii) $\frac{5}{\sqrt{3}}, \frac{7}{3} \sqrt{2},-\sqrt{3}, 3 \sqrt{5}, 2 \sqrt{7}$
Sol :
Write all the numbers as Square roots under one radical
$\frac{5}{\sqrt{3}}=\sqrt{\frac{25}{3}}=\sqrt{8.33}$
$\frac{7}{3} \sqrt{2}=\sqrt{\frac{49}{9}} \times \sqrt{2}$
$=\sqrt{\frac{98}{9}}=\sqrt{10.89}$
$-\sqrt{3}=-\sqrt{3}$
$3 \sqrt{5}=\sqrt{9} \times \sqrt{5}=\sqrt{45}$
$2 \sqrt{7}=\sqrt{4} \times \sqrt{7}=\sqrt{28}$
Since 45>28>10.89>8.33 >-3
$\sqrt{45} \times \sqrt{28}>\sqrt{10.89}>\sqrt{8.33}>-\sqrt{3}$
$3 \sqrt{5}>2 \sqrt{7}>\frac{7}{3} \sqrt{2}>\frac{5}{\sqrt{3}}>-\sqrt{3}$
Hence, the given numbers in descending orders are $3 \sqrt{5}, 2 \sqrt{7}, \frac{7}{3} \sqrt{2}, \frac{5}{\sqrt{3}},-\sqrt{3}$
Question 12
(i) $\sqrt[3]{2}, \sqrt{3}, \sqrt[6]{5}$
Sol :
L.C.M of 2,3 and 6 is 6
$\sqrt[3]{2}=2^{\frac{1}{3}}=\left(2^{2}\right)^{\frac{1}{6}}=(4)^{\frac{1}{6}}$
$\sqrt{3}=3^{\frac{1}{2}}=\left(3^{3}\right)^{\frac{1}{6}}=(27)^{\frac{1}{6}}$
$\sqrt[6]{5}=5^{\frac{1}{6}}=\left(5^{1}\right)^{\frac{1}{6}}=(5)^{\frac{1}{6}}$
Since 4<5<27
$(4)^{\frac{1}{6}}<(5)^{\frac{1}{6}}<(27)^{\frac{1}{6}}$
$\sqrt[3]{2}<\sqrt[6]{5}<\sqrt{3}$
Hence, the given numbers in ascending orders are $\sqrt[3]{2}, \sqrt[6]{5}, \sqrt{3}$
Comments
Post a Comment