ML Aggarwal Solution Class 9 Chapter 1 Rational and Irrational Numbers Exercise 1.5
Exercise 1.5
Question 1
(i) 34√5
Sol :
34√5×4√54√5
=12√516⋅(√5)2
=12√516×5
=3√520
(ii) 5√7√3
Sol :
5√7√3×√3√3
=5√7×3(√3)2
=5√213
(iii) 34−√7
Sol :
34−√7×4+√74+√7
=3(4+√7)(4−√7)(4+√7)
=12+3√716−(√7)2
=12+3√716−7
=12+3√79
=3(4+√7)9
=4+√73
(iv) 173√2+1
Sol :
173√2+1×3√2−13√2−1
=17(3√2−1)(3√2+1)(3√2−1)
=51√2−17(3√2)2−(1)2
=17(3√2−1)9×2−1
=17(3√2−1)18−1
=17(3√2−1)17
=3√2−1
(v) 16√41−5
Sol :
16√41−5×√41+5√41+5
=16(√41+5)(√41)2−(5)2
=16(√41+5)41−25
=16(√41+5)16
=√41+5
(vi) 1√7−√6
Sol :
1√7−√6×√7+√6√7+√6
=√7+√6(√7)2−(√6)2
=√7+√67−6
=√7+√6
(vii) 1√5+√2
Sol :
1√5+√2×√5−√2√5−√2
=√5−√2(√5)2−(√2)2
=√5−√25−2
=√5−√23
(viii) √2+√3√2−√3
Sol :
√2+√3√2−√3×√2+√3√2+√3
=(√2+√3)2(√2)2−(√3)2
=(√2)2+(√3)2+2⋅√2⋅√32−3
=2+3+2√6−1
=−(5+2√6)
=−5−2√6
Question 2
(i) 7+3√57−3√5
Sol :
7+3√57−3√5×7+3√57+3√5
=(7+3√5)2(7)2−(3√5)2
=(7)2+(3√5)2+2×7×3√549−9×5
=49+45+14×3√549−45
=94+42√54
=2(47+21√5)4
=47+21√52
(ii) 3−2√23+2√2
Sol :
3−2√23+2√2×3−2√23−2√2
=(3−2√2)2(3)2−(2√2)2
=(3)2+(2√2)2−2×3×2√29−4×2
=9+8−12√29−8
=17−12√21.
=17−12√2
(iii) 5−3√147+2√14
Sol :
=5−3√147+2√14×7−2√147−2√14
=5×7−5×2√14−7×3√14+2×3×√14⋅√14(7)2−(2√14)2
=35−10√14−21√14+6×1449−4×14
=35−31√14+8449−56
=119−31√14−7
=31√14−1197
Question 3
(i) 7√3√10+√3−2√5√6+√5−3√2√15+3√2
Sol :
7√3√10+√3=7√3√10+√3×√10−√3√10−√3
=7√30−7×3(√10)2−(√3)2
=7√30−2110−3
=7(√30−3)7
=√30−3
2√5√6+√5=2√5√6+√5×√6−√5√6−√5
=2√30−2×5(√6)2−(√5)2
=2√30−106−5
=2√30−10
3√2√15+3√2=3√2√15+3√2×√15−3√2√15−3√2
=3√30−9×2(√15)2−(3√2)2
=3√30−1815−18
=3(√30−6)−3
=−√30+6
∴7√3√10+√3−2√5√6+√5−3√2√15+3√2
=√30−3−(2√30−10)−(−√30+6)
=√30−3−2√30+10+√30−6
=1
Question 4
(i) 3−√53+2√5=−1911+9√5
Sol :
3−√53+2√5×3−2√53−2√5
=(3−√5)(3−2√5)(3)2−(2√5)2
=9−6√5−3√5+2(5)9−4(5)
=19−9√59−20
=+19−9√5−11
=−1911+911√5
∴−1911+a√5=−1911+911√5
⇒a=911
(ii) √2+√33√2−2√3=a−b√6
Sol :
√2+√33√2−2√3×3√2+2√33√2+2√3
=(√2+√3)(3√2+2√3)(3√2)2−(2√3)2
=3(2)+2√6+3√6+2(3)9(2)−4(3)
=6+5√6+618−12
=12+5√66
=2+56√6
=2−(−56)√6
∴a−b√6=2−(−56)√6
⇒a=2;b=−56
(ii) 7+√57−√5−7−√57+√5=a+711b√5
Sol :
7+√57−√5×7+√57+√5
=(7+√5)2(7)2−(√5)2
=49+(√5)2+2⋅7⋅√549−5
=49+5+14√544
7−√57+√5×7−√57−√5=(7−√5)2(7)2−(√5)2
=49+(√5)2−2×7×√549−5
=49+5−14√544
∴7+√57−√5−7−√57+√5=54+14√544−54−14√544
=54+14√5−54+14√544
=28√544
=711×√5
∴a+711b√5=711√5
⇒a=0;b=1
Question 5
(i) 7+3√53+√5−7−3√53−√5=p+q√5
Sol :
7+3√53+√5×3−√53−√5=(7+3√5)(3−√5)(3)2−(√5)2
=21−7√5+9√5−3(5)9−5
=21+2√5−154
=6+2√54
7−3√53−√5×3+√53+√5=(7−3√5)(3+√5)(3)2−(√5)2
=21+7√5−9√5−3(5)9−5
=21−2√5−154
=6−2√54
∴7+3√53+√5−7−3√53−√5=6+2√54−6−2√54
=6+2√5−6+2√54
=4√54
=√5
∴p+q√5=√5
⇒p=0;q=1
Question 6
(i) √22+√2
Sol :
√22+√2×2−√22−√2=√2(2−√2)(2)2−(√2)2
=2√2−24−2
=2(√2−1)2
=√2−1
=1.414-1
=0.414
Question 7
Question 8
(i) x=1−√2
Sol :
Given : x=1−√2
∴1x=11−√2
=11−√2×1+√21+√2
=1+√2(1)2−(√2)2
=1+√21−2
=−(1+√2)
∴(x−1x)4=(1−√2−(−1−√2))4
=(1−√2+1+√2)4
=24
=6
Question 9
(i) x=5−2√6
Sol :
Given : x=5−2√6
∴1x=15−2√6=15−2√6×5+2√65+2√6
=5+2√6(5)2−(2√6)2
=5+2√625−24
=5+2√6
∴x+1x=(5−2√6)+(5+2√6)
=10
We know that (x+1x)2=x2+1x2+2
⇒x2+1x2=(x+1x)2−2
=(10)2−2
=100-2
=98
Question 10
(i) p=2−√52+√5;q=2+√52−√5
Sol :
p+q=2−√52+√5+2+√52−√5
=(2−√5)2+(2+√5)2(2)2−(√5)2
=(4+5−4√5)+(4+5+4√5)4−5
18−1
∴p+q=-18
(ii) p−q=2−√52+√5−2+√52−√5
=(2−√5)2−(2+√5)2(2)2−(√5)2
=(4+5−4√5)−(4+5+4√5)4−5
=9−4√5−9−4√5−1
=−8√5−1
=8√5
(iii) p2+q2
Sol :
We know that
(p+q)2=p2+q2+2pq
∴pq=2−√52+√5×2+√52−√5=1
∴p+q=-18
p2+q2=(p+q)2−2pq
=(−18)2−2×1
=324-2=322
(iv) p2−q2
Sol :
∴p2−q2=(p+q)(p−q)
=(−18)(8√5)
=-144√5
Comments
Post a Comment