Exercise 2.2
Question 1
Sol :
using the formula , we get
$A=5000\left(1+\frac{6}{100}\right)^2$ $A=P\left(1+\frac{r}{100}\right)^n$
$=5000\times \left(\frac{106}{100}\right)^2$
$=5000\times \frac{53\times 53}{50\times 50}$
= 2×53×53
= 106×53
= 5618
C.I=5618-5000
=618
Question 2
Sol :
Using formula , we get
$A=8000\left(1+\frac{10}{100}\right)^4$
$=8000\left(1+\frac{1}{10}\right)^4$
$=8000\left(\frac{10+1}{10}\right)^4$
$=8000\left(\frac{11}{10}\right)^4$
$=8000\left(\frac{11\times 11\times 11\times 11}{10\times 10\times 10\times }\right)$
$=\frac{58564}{5}$
=11712.8
C.I=11712.8-8000
=3712.80
Question 3
Sol :
Since, rate of interest per annum is 5%, therefore,
rate of interest per conversion (half yearly)=2.5%
As the money compounded half yearly.
Number of conversion periods=2
$A=P\left(1+\frac{r}{100}\right)^n$
$A=7400\left(1+\frac{2.5}{100}\right)^2$
$A=7400\left(1+\frac{1}{40}\right)^2$
$A=7400\left(\frac{40+1}{40}\right)^2$
$=7400\times \frac{41\times 41}{40\times 40}$
=7774.625
∴Amount =7774.625
Since , rate of interest per annum 10% , therefore rate of interest per conversion=5%
As the money compounded semi annually,
n(number of conversion periods)=3
$A=P\left(1+\frac{r}{100}\right)^n$
$=5000\left(1+\frac{5}{100}\right)^3$
$=5000\left(1+\frac{1}{20}\right)^3$
$=5000\left(1+\frac{21}{20}\right)^3$
$=\frac{5000 \times 21\times 21 \times 21}{20\times 20\times 20}$
$=\frac{2.5\times 21\times 21\times 21}{4}$
Compound Interest=5788.125-5000
=788.125
Since, the rate of interest per 12 months (annum) therefore rate of interest per conversion $=\frac{1}{4}\times 4 \%$
=1 %
As the money compounded quarterly
n(number of conversions)$=\frac{9}{3}$
=3
$A=P\left(1+\frac{r}{100}\right)^n$
$=10000\left(1+\frac{1}{100}\right)^3$
$=10000\left(\frac{100+1}{100}\right)^3$
$=100000\times \frac{101\times 101\times 101}{100\times 100\times 100}$
=103030.10
Compound Interest=103030.10-100000
=3030.10
Principal=4800, n=2 and R=5%
Simple Interest$=\frac{P\times n \times R}{100}$
$=\frac{4800\times 2 \times 5}{100}$
=480
$A=\left(1+\frac{r}{100}\right)^n P$
$=4800\left(1+\frac{5}{100}\right)^2$
$=4800\left(1+\frac{1}{20}\right)^2$
$=4800\left(\frac{20+1}{20}\right)^2$
$=\frac{4800 \times 21 \times 21}{20\times 20}$
=12×21×21
=5292
C.I=5292-4800=492
∴Difference=492-480
=12(C.I-S.I)
Principal=2500, n=2 and R=4% per annum
Simple Interest$=\frac{P\times n\times R}{100}$
$=\frac{2500\times 2\times 4}{100}$
=200
Given that compound Interest revoked semi annually, therefore n=4 and $R=\frac{4}{2}$=2%
$A=2500\left(1+\frac{2}{100}\right)^4$ $A=P\left(1+\frac{r}{100}\right)^n$
$=2500\left(1+\frac{2}{100}\right)^4$
$=2500\left(1+\frac{1}{50}\right)^4$
$=2500\left(\frac{51}{50}\right)^4$
$=\frac{2500 \times 51\times 51\times 51 \times 51}{50 \times 50 \times 50 \times 50}$
$=\frac{6765201}{2500}$
=2706.80
Compound Interest=2706.80-2500
=2206.80
∴Difference between simple interest and compound interest is
C.I-S.I=206.080-200
=6.08
Question 8
Sol :
Given that
Principal for the first year=2000
Interest for the first year$=\frac{2000 \times 1\times 4}{100}$
=80
Principal for the second year=2080
Interest for the second year$=\frac{2080\times 1\times 3}{100}$
=62.40
Compound Interest=80+62.40
=142.40
Question 9
Sol :
$A=P\left(1+\frac{r_1}{100}\right)\left(1+\frac{r_2}{100}\right)\left(1+\frac{r_3}{100}\right)$
$=3125\left(1+\frac{4}{100}\right)\left(1+\frac{5}{100}\right)\left(1+\frac{6}{100}\right)$
$=3125\left(1+\frac{1}{25}\right)\left(1+\frac{1}{20}\right)\left(1+\frac{3}{50}\right)$
$=\frac{3125\times 26\times 21 \times 53}{25\times 20 \times 50}$
$=\frac{14469}{4}$
=3617.25
∴Compound Interest=3617.25-3125
=492.25
Question 12
Sol :
Given that A=132651, n=3, r=2
$A=P\left(1+\frac{r}{100}\right)^n$
$132651=P\left(1+\frac{r}{100}\right)^3$
$P\left(1+\frac{1}{50}\right)^3=132651$
$\frac{P\times 51\times 51 \times 51}{50\times 50\times 50}$
=132651
$P=\frac{132651\times 50 \times 50\times 50}{51\times 51\times 51}$
$P=\frac{132651\times 125000}{132651}$
P=125000
Question 13
Sol :
$A=P\left(1+\frac{r}{100}\right)^n$
$=P\left(1+\frac{4}{100}\right)^2$
$=P\left(1+\frac{1}{25}\right)^2$
$=\frac{P\times 26\times 26}{25\times 25}$
C.I.$=\frac{26\times 26}{25\times 25}(P)-P$
$=\frac{676P-625P}{625}$
$=\frac{51P}{625}$
$5712=\frac{51P}{625}$
$\frac{5712\times 625}{51}=P$
P=70000
Question 14
Sol :
A=1275, P=1200, n=1 and R=?
$1275=1200\left(1+\frac{r}{100}\right)^n$
$r=\frac{1275}{12}-100$
$r=\frac{75}{12}$
r=6.25%
C.I for second year$=\frac{1275 \times 1\times 6.25}{100}$
$=\frac{7968.75}{100}$
=79.68
∴Compound Interest for second year
=80
Question 15
Sol :
Given that A=2500, P=2304, n=2 and R=?
$2500=2304\left(1+\frac{r}{100}\right)^2$
$\frac{2500}{2304}=\left(1+\frac{r}{100}\right)^2$
$\frac{100+r}{100}=\sqrt{\frac{2500}{2304}}$
$\frac{100+r}{100}=\sqrt{\left(\frac{50}{48}\right)^2}$
$100+r=\frac{100\times 50}{48}$
$r=\frac{5000}{48}-100$
$r=\frac{5000-4800}{4800}$
$r=\frac{200}{4800}$
$r=\frac{1}{24}$%
r=4.16%
$r=4\frac{1}{6}$%
Given that
$A=\frac{25}{16}P$ , n=2 and r=?
$A=P \left(1+\frac{r}{100}\right)^n$
$P=\left(1+\frac{r}{100}\right)^2=\frac{25}{16}P$
$\frac{100+r}{100}=\sqrt{\frac{25}{16}}$
$\frac{100+r}{100}=\frac{5}{4}$
r=125-100
r=25%
$A=P\left(1+\frac{r}{100}\right)^n$
$2315.25=2000\left(1+\frac{r}{100}\right)^3$
$\frac{2315.25}{2000}=\left(\frac{100+r}{100}\right)^3$
$\sqrt[3]{\frac{2.31525}{2.000}}=\frac{100+r}{100}$
2315.25×100×5=(100+r)3
$\sqrt[3]{2315.25\times 500}=100+r$
$\sqrt[3]{1157625}=100+r$
$\sqrt[3]{(105)^3}=100+r$
r=105-100=5%
A=48620.25, P=40000, $r=\frac{R}{2}$ , n=2×2=4
$A=P\left(1+\frac{r}{100}\right)^n$
$48620.25=40000\left(1+\frac{R}{200}\right)^4$
$[(200+R)^2]^2=\frac{48620.25\times 200 \times 200 \times 200 \times 200}{40000}$
$(200+R)^2=\sqrt[2]{(220.5)^2(200)^2}$
$200+R=\sqrt[2]{(220.5)^2}(200)^2$
$200+R=\sqrt[2]{200\times 220.5}$
R=210-200
R=10%
G/T $A=\frac{216}{125}P$ ,n=3
$A=P\left(1+\frac{r}{100}\right)^n$
$\frac{216}{125}P=P\left(1+\frac{r}{100}\right)^3$
$\frac{100+r}{100}=\sqrt[3]{\frac{216}{125}}$
$100+r=\frac{6}{5}\times 100$
r=120-100=20%
∴Rate of interest=20×2%
=40%
Given that A=88200, P=80000, n=2
$A=P\left(1+\frac{r}{100}\right)^2$
$\frac{88200}{80000}=\left(\frac{100+r}{100}\right)^2$
$\sqrt[2]{\frac{21\times 21 \times 2}{20\times 20 \times 2}}=\frac{100+r}{100}$
$\frac{21 \times 100}{20}=100+r$
r=105-100
r=5%
Principal= 88200
$C.I=\frac{88200 \times 1\times 5}{100}$
=882×5
=4410
∴Amount to be paid after 3 years=P+C.I
=88200+4410
=92610
∴A=92610
Let the rate of compound interest be r% per annum
The amount afters will be the principal for the third year
5556.50$=5292\left(1+\frac{r}{100}\right)$
$1+\frac{r}{100}=\frac{5556.60}{5292}$
$\frac{r}{100}=\frac{5556.60-5292}{5292}$
$r=\frac{26460}{5292}$
r=5%
∴The rate of compound Interest=5% per annum
Let the original sum be P
$5292=P\left(1+\frac{5}{100}\right)^2$
$P\times \frac{21\times 21}{20\times 20}=5292$
$P=\frac{5292\times 400}{441}$
P=12×400
P=4800
∴Original Sum is 4800
Let the rate of compound Interest be r% per annum
The amount after 3 years will be the principal for the 4th year
=878.46
$=798.60\left(1+\frac{r}{100}\right)$
$\frac{878.46}{798.60}=\frac{100+r}{100}$
$\frac{r}{100}=\frac{879.46-798.60}{798.60}$
$r=\frac{7986}{798.60}$
r=10%
∴The rate of compound interest = 10% per annum
Let the original sum be P
$798.6=P=\left(1+\frac{10}{100}\right)^3$
$798.6=P\times \frac{11}{10} \times \frac{11}{10} \times \frac{11}{10}$
$\frac{798.6\times 1000}{121\times 11}=P$
$P=\frac{798600}{12\times 11}$
P=600
∴Original amount =600
$A=P\left(1+\frac{r}{100}\right)^n$
=17576$=15625\left(1+\frac{4}{100}\right)^n$
$\frac{17576}{15625}=\left(\frac{26}{25}\right)^n$
$\left(\frac{26}{25}\right)^3=\left(\frac{26}{25}\right)^n$
Bases are equal then power should be equal n=3
P=12500, C.I.=3246.40
Rate = 8%
A=12500+3246.40
=15746.40
Using 15746.40$=12500\left(1+\frac{8}{100}\right)^n$
$\frac{15746.40}{12500}=\left(\frac{27}{25}\right)^n$
$=\left(\frac{27}{25}\right)^3=\left(\frac{27}{25}\right)^n$
∴Bases are equal then powers should be equal
∴Number of years=3
n=3
Here P=16000 , A=18522
As the interest is compounded semi annually
r crate of interest per conversion period $\frac{1}{2}$ of 10%
=5%
Let the number of conversion periods be n, then
18522 $=16000\left(1+\frac{5}{100}\right)^n$
$\frac{18522}{16000}=\left(\frac{21}{20}\right)^n$
$\left(\frac{21}{20}\right)^4=\left(\frac{21}{20}\right)^n$
∴Bases are equal then powers should be equal
n=4
Given that,
A=278250,
R1=5 , r2=6
$2782.50=P\left(1+\frac{5}{100}\right)\left(1+\frac{6}{100}\right)$
$2782.50=P\left(\frac{21}{20}\right)\left(\frac{53}{50}\right)$
$P=\frac{2782.50\times 20\times 50}{21\times 53}$
P=10000
∴Sum=10000
$CI_1=\frac{P_1 \times 1\times r}{100}$
$P_1 r=225\times 100$
$P_1 r=22500$ $P_1=\frac{22500}{r}$
${C_I}_2=\frac{P_2\times 1\times r}{100}$
$240=\dfrac{\frac{22500}{r}\times 1\times r}{100}+r$ $\left[\therefore P_2=\frac{22500}{r}+2\right]$
$r=\frac{240}{225}$
G/I
Compound Interest for the first year CI1=225
Compound Interest for the second year CI2=240
$CI_1=\frac{P_1\times N\times R}{100}$
$225=\frac{P_1\times 1\times R}{100}$
$P_1R=22500$
∴Principal for the second year
$=\frac{22500}{R}+CI_1$
$CI_2=\frac{P_2\times N\times R}{100}$
24×1000=P2×1×R
$24000=\frac{22500}{R}\times R +225 (R)$
225R=24000-22500
$R=\frac{1500}{225}$
(i) Rate pf interest $=6\frac{2}{3}$ %
(ii) Original Sum
$CI_1=\frac{P_1\times N \times R}{100}$
$P_1=\frac{225\times 100 \times 3}{20}$
=225×15
∴Original Sum=3375
(iii) Compound Interest for the third year CI3
Principal=3375+225+240
=3840
$CI_3=\frac{3840\times 20\times 1}{3\times 100}$
Compound Interest for the third year=256
Simple Interest $=\frac{P\times N\times R}{100}$
$=\frac{P\times 2\times 5}{100}=\frac{P}{10}$
Compound Interest $=P\left[\left(1+\frac{5}{100}\right)^2-1\right]$
$=P\left[\left(\frac{21}{20}\right)^2-1\right]$
$=P\left[\frac{441-400}{400}\right]$
$=\frac{41P}{400}$
Given that
$\frac{41P}{400}-\frac{P}{10}=25$
$\frac{41P-40P}{400}=25$
1P=2500×4
P=2500×4
Principal=10000
Simple Interest $=\frac{P\times 1\times 10}{100}=\frac{P}{10}$
Compound Interest $=P\left[\left(1+\frac{5}{100}\right)^2-1\right]$
$=P\left[\left(1+\frac{1}{20}\right)^2-1\right]$
$=P\left[\left(\frac{21}{20}\right)^2-1\right]$
$=P\left[\frac{441-400}{400}\right]=\frac{41P}{400}$
$\frac{41P}{400}-\frac{P}{10}=15$
41P-40P=400×15
P=6000
Given that
Compound Interest for the first year $=P\left[\left(1+\frac{r}{100}\right)^1-1\right]$
1250=P[100+r-100]
1250=Pr
$P=\frac{1250}{r}$
Compound Interest for the second year
$=P\left[\left(1+\frac{r}{100}\right)^2-1\right]$
$1375=P\left[\left(1+\frac{1250}{P\times 100}\right)^2-1\right]$
$1375=P\left[\frac{(P+12.50)^2}{P^2}-1\right]$
$1375=P\left[\frac{P^2+25P+156.25}{P^2}-P^2\right]$
Compound Interest of 2nd conversion period-Compound Interest of 1st conversion=S.I on the Interest of 1st conversion period
∴1375-1250=S.I on Interval on the Interest of 1st Conversion Period
$125=\frac{1250\times 1\times R}{100}$
∴Rate of Interest=10%
Simple Interest for three years=225
$\frac{x\times r\times 3}{100}=225$
$x\times r=\frac{22500}{3}$ [∵x=Principal and r=rate of Interest]
Compound Interest for two years=153
$P\left[\left(1+\frac{r}{100}\right)^2-1\right]=153$
$x\left[\frac{(100+r)^2-(100)^2}{(100)^2}\right]=153$
x[1002+r2+200r-1002]=153×10000
(xr)r+200xr=1530000
$\frac{22500}{3}[r+200]=1530000$
r=68×3-200
r=204-200=4
∴Rate of Interest=4%
∴Simple Interest on three years=225
$\frac{P\times 3\times 4}{100}=225$
P=25×75
P=1875
Compounded annually
First, we found the amount after one year
$A=P\left(1+\frac{r}{100}\right)^n$
$=P\left(1+\frac{10}{100}\right)^n$
$=8000\left(\frac{110}{100}\right)^1$
=8000×1.1=8800
Principal for the second half year=8800
Interest for the next half year$=\frac{8800\times 10\times \frac{1}{2}}{100}$
=440
Compounded annually Interest=9240
As the money Invested for $1\frac{1}{2}$ years , therefore
n=number of conversion periods=3
$A=P\left(1+\frac{r}{100}\right)^n$
$=8000\left(1+\frac{5}{100}\right)^3$
$=8000\left(\frac{21}{20}\right)^3$
$=8000\left(1.05\right)^3$
=9261
Interest for $1\frac{1}{2}$ years compounded semi annually=9261
difference between compounded semi annually and annually
=9261-9240
=21
Compounded Annually
Compound Interest for two years
$=P\left[\left(1+\frac{r}{100}\right)^n-1\right]$
$=P\left[\left(1+\frac{20}{100}\right)^n-1\right]$
$=P\left[\left(1+\frac{1}{5}\right)^2-1\right]$
$=P\left[\left(\frac{6}{5}\right)^2-1\right]$
$=P\left[\frac{36-25}{25}\right]$
$=\frac{11P}{25}$
=0.44P
Compounded half yearly,
Compound Interest for two years $=P\left[\left(1+\frac{r}{100}\right)^n-1\right]$
$=P\left[\left(1+\frac{10}{100}\right)^4-1\right]$
$=P\left[\left(\frac{11}{100}\right)^4-1\right]$
$=P[(1.1)^4-1]$
=P[1.4641-1]
=0.464P
∴Given that 0.464P-0.44P=482
0.024P=482
$P=\frac{482}{0.0241}$
P=20000
∴Sum of money lent out=20000
Amount after one year$=P\left(1+\frac{r}{100}\right)^n$
$13230=P\left(1+\dfrac{r/2}{100}\right)^2$
Amount after $1\frac{1}{2}$ year $=P\left(1+\frac{r}{100}\right)^n$
$13891.50=P\left(1+\frac{r/2}{100}\right)^3$
$13891.50=\frac{13230}{\left(1+\frac{r/2}{100}\right)^2} \left(1+\frac{r/2}{100}\right)^2$
$\left[\therefore P=\frac{13230}{\left(1+\frac{r/2}{100}\right)^2}\right]$
$\left[P=\frac{13230}{\left(1+\frac{5}{100}\right)^2}\right]$
$=\frac{13230\times 20\times 20}{21\times 21}$
$=\frac{13230}{1.1025}$
∴Sum=12000
$\frac{13891.50}{13230}=1+\frac{r}{200}$
$\frac{13891.50}{13230}=\frac{200+r}{200}$
10.5×20=200+r
210=200+r
r=10
∴Rate of Interest=10%
Sum$=\frac{13230}{11.10251}$
=12000
Comments
Post a Comment