ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.1
Exercise 3.1
Question 1
(i) (2x+7y)2
It is in the form of (a+b)2=a2+2ab+b2
∴a=2x, b=7y
∴(2x+7y)2=(2x)2+2.2x.7y+(7y)2
=4x2+28xy+49y2
(ii) $\left(\frac{1}{2}x+\frac{2}{3}y\right)^2$
Sol :
$\left(\frac{1}{2}x \right)^2+2\times \frac{1}{2} \times x \times \frac{2}{3}\times y+\left(\frac{2}{3} y\right)^2$
$\frac{x^2}{4}+\frac{2xy}{3}+\frac{4}{9}y^2$
Question 2
(i) $\left(3x+\frac{1}{2x}\right)^2$
It is in the form of $(a+b)^2=a^2+2ab+b^2$
∴$(3x)^2+2.3x.\frac{1}{2x}+\left(\frac{1}{2x}\right)^2$
$9x^3+3+\frac{1}{4x^2}$
(ii) $(3x^2y+5z)^2$
It is in the form of $(a+b)^2=a^2+2ab+b^2$
Here $a=3x^2y$ , b=5x
$(3x^2y)^2+2.3x^2y.5z+(5z)^2$
$9x^4y^2+30x^2yz+25z^2$
Question 3
(i) $\left(3x-\frac{1}{2x}\right)^2$
It is in the form of $(a-b)^2=a^2-2ab+b^2$
Here, a=3x ; $b=\frac{1}{2x}$
$(3x)^2-2.3x.\frac{1}{2x}+\left(\frac{1}{2x}\right)^2$
$3^2-x^2-3+\frac{1}{2^2x^2}$
$9x^2-3+\frac{1}{4x^2}$
(ii) $\left(\frac{1}{2}x-\frac{3}{2}y\right)^2$
It is in the form of $(a-b)^2=a^2-2ab+b^2$
Here, $a=\frac{1}{2}x$ ; $b=\frac{3}{2}y$
∴$\left(\frac{1}{2}x\right)^2-2\times \frac{1x}{2}\times \frac{3}{2}y+\left(\frac{3}{2}y\right)^2$
$\frac{x^2}{4}-\frac{3xy}{2}+\frac{9y^2}{4}$
Question 4
(i) (x+3)(x+5)
⇒x(x+5)+3(x+5)
⇒$x^2+5x+3x+15$
⇒$x^2+8x+15$
(ii) (x+3)(x-5)
⇒x(x-5)+3(x-5)
⇒x.x-x.5+3.x-3.5
⇒x2-5x+3x-15
⇒x2-2x-15
(iii) (x-7)(x+9)
⇒x(x+9)-7(x+9)
⇒x.x+9.x-7.x-7.9
⇒x2+9x-7x-63
⇒x2+2x-63
(iv) (x-2y)(x-3y)
⇒x(x-3y)-2y(x-3y)
⇒x.x-x.3y-2y.x+2y.3y
⇒x2-3xy-2xy+6y2
⇒x2-5xy+6y2
Question 5
(i) (x-2y-z)2
It is in the form of (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Here, a=x, b=-2y, c=-z
⇒x2+(-2y)2+(-z)2+2(x(-2y)+(-2y)(-z)+(-z)x)
⇒x2+4y2+z2+2(-2xy+2yz-zx)
⇒x2+4y2+z2+4yz-4xy-2zx
(ii) (2x-3y+4z)2
It is in the form of (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Here a=2x, b=-3y, c=4z
⇒(2x)2+(-3y)+(4z)+2(2x.(-3y)+(-3y)(4z)+(4z)(2x))
⇒4x2+4y2+16z2+2(-6xy-12yz+8xz)
⇒4x2+4y2+16z2-12xy-24yz+16xz
Question 6
(i) $\left(2x+\frac{3}{x}-1\right)^2$
It is in the form of (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Here, a=2x , $b=\frac{3}{x}$ , c=-1
⇒$(2x)^2+\left(\frac{3}{x}\right)^2+(-1)^2+2\left(2x.\frac{3}{x}+\frac{3}{x}(-1)+(-1)2x\right)$
⇒$4x^2+\frac{9}{x^2}+1+2\left(6-\frac{3}{x}-2x\right)$
⇒$4x^2+\frac{9}{x^2}+1+12-\frac{6}{x}-4x$
⇒$4x^2+\frac{9}{x^2}-\frac{6}{x}-4x+13$
(ii) $\left(\frac{2}{3}x-\frac{3}{2x}-1\right)^2$
Sol :
It is in the form of (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Here, $a=\frac{2}{3}x,b=\frac{-3}{2x}$, c=-1
⇒$\left(\frac{2}{3}x\right)^2+\left(\frac{-3}{2x}\right)^2+(-1)^2+2\left[\frac{2}{3}x\left(\frac{-3}{2x}\right)+\left(\frac{-3}{2x}\right)(-1)+(-1)\left(\frac{2}{3}x\right)\right]$
⇒$\frac{4}{9}x^2-\frac{9}{4x^2}+1+2\left[-1+\frac{3}{2x}-\frac{2}{3}x\right]$
⇒$\frac{4}{9}x^2-\frac{9}{4x^2}+1+2+\frac{6}{2x}-\frac{4x}{3}$
⇒$\frac{4}{9}x^2-\frac{9}{4x^2}+\frac{3}{x}-\frac{4x}{3}-1$
Question 7
(i) (x+2)3
Sol :
It is in the form of (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
⇒x3+6.x2+3x.4+8
⇒x3+6x2+12x+8
(ii) (20+b)3
Sol :
⇒(2a)3+3.(2a)2.b+3.2a.b2+b3
⇒8a3+3.4a2.b+6ab2+b3
⇒8a+12a2b+6ab2+b3
Question 8
(i) $\left(3x+\frac{1}{x}\right)^3$
Sol :
It is in the form of (a+b+c)3=a3+3a2b+3ab2+b3
a=3x ; $b=\frac{1}{x}$
∴$(3x)^3+3.(3x)^2.\frac{1}{x}+3.3x.\left(\frac{1}{x}\right)^2+\left(\frac{1}{x}\right)^3$
⇒$27x^3+3.9x^2\frac{1}{x}+9.x.\frac{1}{x^2}+\frac{1}{x^3}$
⇒$27x^3+27x+\frac{9}{x}+\frac{1}{x^3}$
(ii) (2x-1)3
Sol :
It is in the form of (a-b)3=a3-3a2b+3ab2-b3
Here, a=2x, b=1
∴(2x)3-3(2x)2.1+3(2x)(1)2-(1)3
⇒8x3-3.4x2+6x-1
⇒8x3-12x2+6x-1
Question 9
(i) (5x-3y)3
Sol :
It is in the form of (a-b)3=a3-3a2b+3ab2-b3
a=5x ; b=3y
∴ (5x)3-3.(5x)2.3y+3.5x.(3y)2-(3y)3
⇒125x3-3.25x2.3y+3.5x.9y2-27y3
⇒125x3-225x2y+135y2.x-27y3
(ii) $\left(2x-\frac{1}{3y}\right)^3$
Sol :
⇒$(2x)^3-3.(2x)^2.\frac{1}{3y}+3.2x.\left(\frac{1}{3y}\right)^2-\left(\frac{1}{3y}\right)^3$
⇒$8x^3-3.4x^2.\frac{1}{3y}+3.2x.\frac{1}{9y^2}-\frac{1}{27y^3}$
⇒$8x^3-\frac{4x^2}{y}+\frac{2x}{3y^2}-\frac{1}{27y^3}$
Question 10
(i) (a+b)2+(a-b)2
⇒a2+2ab+b2+a2-2ab+b2
⇒2a2+2b2
⇒2(a2+b2)
(ii) (a+b)2-(a-b)2
⇒(a2+2ab+b2)-(a2-2ab+b2)
⇒a2+2ab+b2-a2+2ab-b2
⇒2ab+2ab
⇒4ab
Question 11
(i) $\left(a+\frac{1}{a}\right)^2+\left(a-\frac{1}{a}\right)^2$
⇒$\left(a^2+2.a.\frac{1}{a}+\right)+\left(a^2+2.a.\frac{1}{a}+\frac{1}{a^2}\right)$
⇒$a^2+2+\frac{1}{a^2}+a^2-2+\frac{1}{a^2}$
⇒$2a^2+\frac{2}{a^2}$
⇒$2\left(a^2+\frac{1}{a^2}\right)$
(ii) $\left(a+\frac{1}{a}\right)^2-\left(a-\frac{1}{a}\right)^2$
⇒$\left(a^2+2.a.\frac{1}{a}+\frac{1}{a^2}\right)-\left(a^2-2.a.\frac{1}{a}+\frac{1}{a^2}\right)$
⇒$a^2+2+\frac{1}{a^2}-a^2+2-\frac{1}{a^2}$
⇒2+2
⇒4
Question 12
(i) (3x-1)2-(3x-2)(3x+1)
⇒(3x)2-2.3x.1+12-3x(3x+1)+2(3x+1)
⇒9x2-6x+1-9x2-3x+6x+2
⇒3x+3
⇒3(x+1)
(ii) (4x+3y)2-(4x-3y)2-48
⇒(4x)2+2.3y.4x+(3y)2-((4x)2-2.4x.3y+(3y)2)-48
⇒16x2+24xy+9y2-16x2+24xy-9y2-48
⇒48xy-48
⇒48(xy-1)
Question 13
(i) (7p+9q)(7p-9q)
⇒7p(7p-9q)+9q(7p-9q)
⇒49p2-63pq+63pq-81q2
⇒49p2-81q2
(ii) $\left(2x-\frac{3}{x}\right)\left(2x+\frac{3}{x}\right)$
⇒$(2x)^2-\left(\frac{3}{x}\right)^2$
⇒$(2x)^2-\left(\frac{3}{x}\right)^2$
⇒Since it is in the form of (a+b)(a-b)=a2-b2
∴ $4x^2-\frac{9}{x^2}$
Question 14
(i) (2x-y+3)(2x-y-3)
⇒((2x-y)+3)((2x-y)-3)
It is in the form of (a+b)(-a-b)=a2-b2
Question 15
Question 16
Question 17
Question 18
⇒27p3-64q3
Question 19
Question 20
Question 21
Question 22
Question 23
Question 24
Question 25
Question 26
Question 27
Question 28
⇒$\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=3$
Comments
Post a Comment