ML Aggarwal Solution Class 9 Chapter 4 Factorisation Exercise 4.5
Exercise 4.5
Question 1
(i) 8x3+y3
⇒(2x)3+y3
∴It is in the form of a3+b3=(a+b)(a2-ab+b2)
∴there a=2x ; b=7
∴⇒(2x)3+y3=(2x+y)[(2x)2-2x.y+y2]
=(2x+y)(4x2-2xy+y2)
(ii) 64x3-125y3
⇒(4a)3-(5y)3
⇒It is in the form of a3-b3=(a-b)(a2+ab+b2)
⇒here a=4x ; b=5y
∴⇒(4x-5y)[(4x)2+4x.5y+(5y)2]
⇒(4a-5y)(16x2+20xy+25y2)
Question 2
Sol :
(i) 64x3+1
⇒(4x)3+13
⇒It is in the form of a3+b3=(a+b)(a2-ab+b2)
Here a=4x ; b=1
∴⇒(4x+1)[(4x)2-4x.1+12]
⇒(4x+1)(16x2-4x+1)
(ii) 7a3+56b3
⇒7(a3+8b3)
⇒7(a3+(2b)3)
It is in the form of a3+b3=(a+b)(a2-ab+b2)
∴Here a=a ; b=2b
∴⇒7(a+2b)(a2-a.2b+(2b)2)
⇒7(a+2b)(a2-2ab+4b2)
Question 3
(i) $\frac{x^6}{343}+\frac{343}{x^6}$
$\frac{x^6}{7^3}+\frac{7^3}{x^6}$
⇒It is in the form of a3+b3=(a+b)(a2-ab+b2)
⇒$\frac{(x^2)^3}{7^3}+\frac{7^3}{(x^2)^3}$
⇒$\left(\frac{x^2}{7}+\frac{7}{x^2}\right)\left[\left(\frac{x^2}{7}\right)^2-\frac{x^2}{7}\times \frac{7}{x^2}+\left(\frac{7}{x^2}\right)^2\right]$
⇒$\left(\frac{x^2}{7}+\frac{7}{x^2}\right)\left(\frac{x^4}{49}-1+\frac{49}{x^4}\right)$
(ii) $8x^3-\frac{1}{27y^3}$
⇒$(2x)^3-\frac{1}{(3y)}^3$
⇒It is in the form of a3+b3=(a+b)(a2-ab+b2)
⇒$\left(2x-\frac{1}{3y}\right)\left[(2x)^2+2x.\frac{1}{3y}+(3y)^2\right]$
⇒$\left(2x-\frac{1}{3y}\right)\left(4x^2+\frac{2x}{3y}+9y^2\right)$
Question 4
(i) x2+x5
⇒x2(1+x3)
⇒x3(13+x3)
It is in the form of a3+b3=(a+b)(a2-ab+b2)
Here a=1 ; b=x
∴x2(1+x)(12-1.x+x2)
⇒x2(1+x)(1-x+x2)
(ii) 32x4-500
⇒4x(8x3-125)
⇒4x((2x)3-53)
It is in the form of a3+b3=(a+b)(a2-ab+b2)
Here a=2x ; b=5
⇒4x(2x-5)((2x)2+2x.5+52)
⇒4x(2x-5)(4x2+10x+25)
Question 5
(i) 27x3y3-8
⇒(3xy)3-23
It is in the form of a3+b3=(a+b)(a2-ab+b2)
Here a=3xy ; b=2
⇒(3xy-2)[(3xy)2+3xy.2+22]
⇒(3xy-2)[9x2y2+6xy+4]
(ii) 27(x+y)3+8(2x-y)3
⇒33(x+y)3+23(2x-y)3
⇒(3(x+y)3)+(2(x-y))3
It is in the form of a3+b3=(a+b)(a2-ab+b2)
Question 6
(i) a3+b3+a+b
⇒(a3+b3)+(a+b)
⇒(a+b)(a2-ab+b2)+(a+b)
⇒(a+b)(a2-ab+b2+1)
(ii) a3-b3-a+b
⇒(a3-b3)-(a-b)
⇒(a-b)(a2+ab+b2)-(a-b)
⇒(a-b)(a2+ab+b2-1)
Question 7
(i) x3+x+2
⇒x3+x+1+1
⇒(x3+1)+(x+1)
⇒(x+1)(x2-x+1)+(x+1)
⇒(x+1)(x2-x+1+1)
⇒(x+1)(x2-x+2)
(ii) a3-a-120
⇒a3-a-125+5
⇒a3-125-(a-5))
⇒(a3-53)-(a-5)
⇒(a-5)(a2+5a+52)-(a-5)
⇒(a-5)(a2+5a+25)-(a-5)
⇒(a-5)[a2+5a+25-1]
⇒(a-5)(a2+5a+24)
Question 8
(i) x3+6x2+12x+16
⇒x3+6x2+12x+8+18
⇒(x3+3.2.x2+3.22.x+23)+8
It is in the form of a3+b3=(a+b)(a2-ab+b2)
∴(x+2)3+8
⇒(x+2)3+23
⇒(x+2+2)[(x+2)2-2.(x+2)+22]
⇒(x+4)(x2+4+4x-2x-4+4)
⇒(x+4)(x2+2x+4)
(ii) a3-3a2b+3ab2-2b3
⇒a3-3a2b+3ab2-b3-b3
⇒(a-b)3-b3
It is in the form of a3+b3=(a+b)(a2-ab+b2)
⇒(a-2b)((a-b)2+(a-b)b+b2)
⇒(a-2b)(a+b-2ab+ab-b2+b2)
⇒(a-2b)(a2+b2-ab)
Question 9
(i) 2a3+16b3-5a-10b
⇒a3+a3+8b3-5a-10b+8b3
⇒2(a3+(2b)3)-5(a+2b)
It is in the form of a3+b3=(a+b)(a2-ab+b2)
⇒2[(a+2b)(a2-2ab+(2b)a2)-5(a+2b)]
⇒2[(a+2b)(a2-2ab+4b2)]-5(a+2b)
⇒(a+2b)[2(a2-2ab+4b2)-5]
⇒(a+2b)[2a2-4ab+8b2-5]
(ii) $a^3-\frac{1}{a^3}-2a+\frac{2}{a}$
⇒a3-2a+a-a+$\frac{2}{a}+\frac{1}{a}-\frac{1}{a}-\frac{1}{a^3}$
⇒a3-3a+a+$\frac{3}{a}-\frac{1}{a}-\frac{1}{a^3}$
⇒a3-3a2.$\frac{1}{a}+3.a.\frac{1}{a^2}-\frac{1}{a^3}+\left(a-\frac{1}{a}\right)$
It is in the form of a3+b3=(a+b)(a2-ab+b2)
∴Here a=a ; $b=\frac{1}{a}$
∴$\left(a-\frac{1}{a}\right)^3+\left(a-\frac{1}{a}\right)$
⇒$\left(a-\frac{1}{a}\right)\left[\left(a-\frac{1}{a}\right)^2+1\right]$
⇒$\left(a-\frac{1}{a}\right)\left[a^2+\frac{1}{a^2}-2.a.\frac{1}{a}+1\right]$
⇒$\left(a-\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}-2+1\right)$
⇒$\left(a-\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}-1\right)$
Question 10
(i) a6-b6
⇒(a2)3-(b2)3
It is in the form of a3+b3=(a+b)(a2-ab+b2)
Here a=a2 ; b=b2
∴(a2-b2)[(a2)2+a2-b2+(b2)2]
⇒(a2-b2)(a4+a2b2+b4)
(ii) x6-1
⇒(x2)3-13
⇒It is in the form of a3+b3=(a+b)(a2-ab+b2)
∴(x2-1)[(x2)2+x2.1+12]
⇒(x2-1)(x4+x2+1)
Question 11
(i) 64x6-729y6
⇒(2x)6-(3y)6
⇒[(2x)2]3-[(3y)2]3
⇒It is in the form of a3+b3=(a+b)(a2-ab+b2)
Here a=(2x)2 ; b=(3y)2
⇒[(2x)2-(3y)2][((2x)2)2+(2x)2.(3y)2+((3y)2)2]
⇒[4x2-9y2][16x4+4x2.9y2+((9y2)2]
⇒[4x2-9y2][16x4+36x2y2+81y4]
⇒[(2x)2-(3y)2][16x4+36x2y2+81y4]
⇒(2x+3y)(2x-3y)(16x4+36x2y2+81y4)
(ii) $x^2-\frac{8}{x}$
⇒$\left(x^2-\frac{8}{x}\right)\times \frac{x}{x}$
⇒$x\left(x^2-\frac{8}{x}\right)\frac{1}{x}$
⇒$\left(x^3-x.\frac{8}{x}\right)\frac{1}{x}$
⇒$(x^3-8)\frac{1}{x}$
⇒$\left(x^3-2^3\right).\frac{1}{x}$
It is in the form of a3+b3=(a+b)(a2-ab+b2)
a=x ; b=2
⇒$\frac{1}{x}.(x+2)(x^2+2x+4)$
Question 12
(i) 250(a-b)3+2
⇒$(250(a-b)^3+2)\frac{2}{2}$
⇒$2\frac{(250(a-b)^3+2)}{2}$
⇒2(125(a-b)3+1)
⇒2(53(a-b)3+1)
⇒2((5(a-b))3+13)
It is in the form of a3+b3=(a+b)(a2-ab+b2)
⇒2[5(a-b)+1](5(a-b))2-5(a-b).1+12]
⇒2[(5a-5b+1)][25(a2+b2-2ab)-5a+5b+1]
⇒2(5a-5b+1)(25a2+25b2-50ab-5a+5b+1)
(ii) 32a2x3-8b2x3-4a2y3+b2y3
⇒x3(32a2-8b2)-y3(4a2-b2)
⇒8x3(4a2-b2)-y3(4a2-b2)
⇒(4a2-b2)(8x3-y3)
⇒((2a)2-(b)2)((2x)3-(y)3)
⇒(2a+b)(2a-b)[(2x-y)(2x)2+2xy+y]
⇒(2a+b)(2a-b)(2x-y)(4x2+2xy+y2)
Question 13
(i) x2+y2
⇒(x3)3+(y3)3
It is in the form of a3+b3=(a+b)(a2-ab+b2)
Here a=x3 ; b=y3
∴(x3+y3)[(x3)3-x3y3+(y3)2]
⇒(x3+y3)(x6-x3y3+(y3)2)
It is in the form of a3+b3=(a+b)(a2-ab+b2)
⇒Here a=x ; b=y
∴⇒(x+y)(x2-xy+y2)(x6-x3y3+y6)
(ii) x6-7x3-8
⇒(x2)3-7x3-x3-8
⇒(x2)3-8x3+x3-23
⇒[(x2)3-(2x)3]+(x3-22)
⇒(x2-2x)[(x2)2+x2.2x+(2x)2]+(x-2)(x2+2x+22)
⇒(x2-2x2)(x4+2x3+4x2)+(x-2)(x2+2x+4)
⇒x(x-2)x2(x2+2x+4)+(x-2)(x2+2x+4)
Taking common factor as (x-2) and x2+2x+4
∴(x-2)(x2+2x+4)(x+1)(x2-x+1)
Comments
Post a Comment