ML Aggarwal Solution Class 9 Chapter 5 Simultaneous Linear Equations Exercise 5.2
Exercise 5.2
Question 1
(i)
⇒3x+4y=10..(1)
⇒2x-2y=2...(2)
⇒x=2+2y2
⇒3(2+2y2)+4y=10
⇒6+6y2+4y=10
⇒6+6y+8y=20
⇒6+14y=20
⇒14y=20-6
⇒14y=14
⇒y=1
⇒3x+4y=10
⇒3x=10-4
⇒3x=6
⇒x=63
⇒x=2
∴x=2 ; y=1
(ii)
⇒2x=5y+4
⇒3x-2y+16=0
⇒x=5y+42
⇒3(5y+42)−2y+16=0
⇒15y+122−2y+16=0
⇒15y+12-4y+32=0
⇒11y+44=0
⇒11y=-44
⇒y=−4411=−4
⇒y=-4
⇒2x=5(-4)+4
⇒2x=-20+4
⇒2x=-16
⇒x=−162
⇒x=-8
∴x=-8 ; y=-4
Question 2
(i) 34x−23y=1
⇒38x−16y=1
⇒38x=1+16y
⇒x=(1+16y)83
∴34(1+16y)83−23y=1
⇒2+26y−23y=1
⇒2−1=23y−13y
⇒1=2−13.y
⇒1=13y
∴y=3
∴34x−23(3)=1
⇒34x=1+2
⇒34x=3
⇒x=3×43
⇒x=4
(ii) 2x-3y-3=0
⇒23x+4y+12=0
⇒2x-3y-3=0
⇒2x=3y+3
⇒x=3y+32
∴23(3y+32)+4y+12=0
⇒23×32(y+1)+4y+12=0
⇒y+1+4y+12=0
⇒5y+32=0
⇒5y=−32
⇒y=−310
∴2x-3y-3=0
⇒2x−3(−310)−3=0
⇒2x+910−3=0
⇒2x=3−910
⇒2x=30−910
⇒x=2120
Question 3
(i) 15x-14y=117
⇒14x-15y=115
⇒14x=115+15y
⇒x=115+15y14
∴15(115+15y14)−14y=117
⇒1725+225y-196y=117×14
⇒1725+225y-196y=1638
⇒29y=1638-1725
⇒29y=-87
⇒y=−8729
⇒y=-3
∴15x-14(-3)=117
⇒15x+42=117
⇒15x=117-42
⇒15x=75
⇒x=7515
⇒x=5
(ii) 41x+53y=135
⇒53x+41y=147
⇒53x=147-41y
⇒x=147−41y53
⇒41x+53y=135
⇒41(147−41y53)+53y=135
⇒6027-1681y+2809y=135×53
⇒6027-1681y+2309y=7155
⇒1128y=1128
⇒y=11281128
⇒y=1
∴41x+53y=135
⇒41x+53(1)=135
⇒41x=135-53
⇒41x=82
⇒x=8241
⇒x=2
Question 4
(i) x6=y−6
⇒3x4=1+y
⇒y=3x4−1
∴x6=3x4−1−6
⇒x6=3x4−7
⇒x6=3x−284
⇒x3=3x−282
⇒2x=9x-84
⇒9x-2x=84
⇒7x=84
⇒x=847
⇒x=12
∴x6=y−6
⇒126=y−6
⇒y=2+6=8
(ii) x−23y=83
⇒2x5−y=75
⇒y=2x5−75
⇒y=2x−75
∴x−23(2x−75)=83
⇒x−4x−1415=83
⇒15x−4x+1415=83
⇒15x-4x+14=8×5
⇒11x+14=40
⇒11x=40-14
⇒11x=26
⇒x=2611
∴2611−23y=83
⇒23y=2611−83
⇒23y=78−8833
⇒y=1033×32=511
Question 5
(i) 9-(x-4)=y+7
⇒2(x+y)=4-3y
⇒9-x+4=y+7
⇒13-x=y+7
⇒y=13-x-7
⇒y=6-x
∴2(x+6-x)=4-3(6-x)
⇒2x+12-2x=4-18+3x
⇒12=-14+3x
⇒3x=12+14
⇒3x=26
⇒x=263
∴y=6-x
⇒y=6−263
⇒y=−83
(ii) 2x+x−y6=2
⇒x−2x+y3=1
⇒3x−2x−y3=1
⇒x-y=3
⇒x=3+y
∴2(3+y)+3+y−y6=2
⇒6+2y+36=2
⇒6+2y+12=2
⇒2y=2−12−6
⇒2y=4−1−122
⇒2y=−92
∴x=3+y
⇒x=3−94
⇒x=12−94
⇒x=34
Question 6
(i) 4x+x−y8=17
⇒32x+x−y8=17
⇒38x-y=136...(i)
and 2y+x−5y+23=2
⇒6y+3x−5y−23=2
⇒y+3x-2=6
⇒y+3x=6+2
⇒y+3x=8
⇒y=8-3x...(ii)
Equation (ii) in equation (i)
∴33x-8+3x=136
⇒36x=136+8
⇒x=14436
⇒x=4
∴y=8-3(4)
=8-12=-4
(ii) Given : x-3y=3x-1=2x-y
∴x-3y=3x-1
⇒3x-x=1-3y
⇒2x=1-3y
⇒2x+3y=1...(i)
∴3x-1=2x-y
⇒3x-2x=1+y
⇒x=1+y...(ii)
Equation (ii) in equation (i)
∴2(1+y)+3y=1
⇒2+2y+3y=1
⇒5y=1-2
⇒5y=-1
⇒y=−15
∴x=y+1
⇒x=−15+1
⇒x=−1+55
⇒x=45
Question 7
Given : 3x+4y=7
⇒5x+6y=13
⇒5x=13−6y
⇒6y=13−15x
⇒6y=13x−5x
⇒y=13x−56x
∴3x+4y=7
⇒3x+4(13x−56x)=7
⇒3x+52x−206x=7
⇒18+52x−206x=7
⇒52x-2=42x
⇒52x-42x=2
⇒10x=2
⇒x=210
⇒x=15
⇒y=13(15)−56(15)
⇒y=135−565
⇒y=13−25565
⇒y=−126
⇒y=-2
(ii) 5x−9=1y
⇒x+1y=3
⇒x+1y=3
⇒x=3−1y
⇒x=3−1y
⇒5(3y−1y)−9=1y
⇒15y−5y−9=1y
⇒15y−5−9yy=1y
⇒6y-5=1
⇒6y=1+5
⇒6y=6
⇒y=66
⇒y=1
⇒x=3y−1y
⇒x=3−11
⇒x=2
Question 8
(i) px+qy=p-q
⇒qx-py=p+q
⇒qx=p+q+py
⇒x=q+p(1+y)q
⇒p(q+p(1+y)q)+qy=p−q
⇒pq+p2(1+y)q+qy=p−q
⇒pq+p2(1+y)q+q2y=p−q
⇒pq+p2(1+y)+q2y=pq-q2
⇒p2(1+y)=-q2-q2y
⇒p2(1+y)=-q2(1+y)
⇒p2+p2y=-q2-q2y
⇒p2y+q2y=-q2-p2
⇒y(p2+q2)=-(p2+q2)
⇒y=-1
⇒∴x=q+p(−1+y)q
⇒x=q+p(1−1)q
⇒x=q+p(0)q
⇒x=q+0q
⇒x=qq
⇒x=1
⇒∴x=1
⇒y=-1
(ii) xa−yb=0
⇒ax+by=a2+b2
⇒xa=yb
⇒x=ab⋅y
⇒a⋅ab⋅y+by=a2+b2
⇒a2by+by=a2+b2
⇒a2y+b2yb=a2+b2
⇒(a2+b2)y=(a2+b2)b
⇒y=b
⇒∴x=ab⋅b.
⇒∴x=a
Question 9
Given 2x+y=23
⇒4x-y=19
⇒y=23-2x
⇒∴4x-23+2x=19
⇒6x=19+23
⇒6x=42
⇒x=426
⇒x=7
⇒∴y=23-2x
⇒y=23-2(7)
⇒y=23-14
⇒y=9
⇒∴x-3y⇒7-3(9)
=7-27=-20
∴x-3y=-20
⇒5y-2x⇒5(9)-2(7)
⇒45-14
⇒31
∴5y-2x=31
Question 10
Given expression ax+by
(i) ax+by=7
When x=2 ; y=1
∴2a+b=7..(i)
(ii) ax+by=1
When x=-1 ; y=1
⇒-a+b=1..(iii)
∴b=1+a
⇒2a+1+a=7
⇒3a+1=7
⇒3a=7-1
⇒3a=6
⇒a=63
⇒a=2
∴b=1+a
b=1+2=3
Question 6
Let the number be xy[10x+y]
Reverse of that number yx[10y+x]
Answer : Given that xy[10x+1]yx[10y+x]=134
⇒101+y10y+x=74
⇒40x+4y=70y+71
⇒33x-66y=0
⇒x-2y=0...(i)
Ans also given that x+y=12...(2)
On solving equation (1) and equation (2)
eq(2)-eq(1)
⇒x+y-x+2y=12
⇒3y=2
⇒y=4
Putting y=4 in (1)
⇒x-8=0
⇒x=8
The required number is 84
Question 7
Let the number be xy[10x+y] and reverse of number is yx[10y+x]
Given : 10x+y10y+x=56
⇒60x+6y=50y+5x
⇒55x-44y=0
⇒5x-4y=0...(1)
And also given that x-y=1..(2)
Put x=y+1 in equation (1)
⇒5y+5-4y=0
⇒y=-5
⇒Put y-5 in equation (2)
⇒x=-4
∴The required number is 45
Question 8
Let the number be xyz[100x+10y+z]
Given that x=4z...(1)
x+y+z=14...(2)
And reverse of the number is zyx[100z+10y+x]
And given that (100x+10y+z)-(100z+10y+x)=594
⇒99x-99z=594
⇒99[x-z]=594
⇒x-z=6..(3)
On solving eq(1) and eq(3)
⇒4z-z=6
⇒3z=6
⇒z=2
Putting z=2 in eq(3)
⇒x-2=6
⇒x=8
Putting x=8 and z=2 in eq(2)
⇒8+y+2=14
⇒y+4
∴The required number is 842
Question 9
Let the age of marina and her daughter be 'M' and 'D'
Given that
M-4=3(D-4)..(1)
M+6=2(D+6)..(2)
eq(1)⇒M-4=3D-12
⇒M=3D-8..(3)
eq(2)⇒M+6=2D+12
⇒M=2D+6..(4)
From (3) and (4)
⇒3D-8=2D+6
⇒D=14
Putting D=14 in eq(4)
⇒M=28+6=34
⇒M=34
∴The present age of marina and her daughter is 34 and 14
eq(1)×12⇒144x+120y=1560000
eq(2)×10⇒100x+120y=1340000
Solving above equations
⇒44x=220000
⇒x=5000
Putting x=5000 in eq (1)
⇒60000+10y=130000
⇒10y=70000
⇒y=7000
Thus the money inverted at 12% is 5000
10% is 7000
Question 22
Let the cost price of table be "x" and list price of their be "y"
Case (i)
Table is sold at a profit of 8%
∴S.P of table x+8x100=108x100
Chair is sold at a discount of 10%
∴S.P of chair =y−10y100=90y100
And given that 108x100+90y100=1008
⇒6x+5y=5600..(1)
Case-(ii)
Table is sold at a profit of 10%
∴S.P of table x+10x100=110y100
Chair is sold at a discount of 8%
∴S.P of chair y−8y100=92y100
Given that
110x100+92y100=1028
⇒110x+92y=102800...(2)
On solving eq-(1)+eq-(2)
x=600 , y=400
∴Cost price of table is 600 and list price of chair is 400
Let the money has by A and B is "x" and "y" respectively
Question 23
Case-(i)
Given that
⇒x+100=75%(y-100)
⇒x+100=375100(y−100)
⇒4x+400=3y-300
⇒4x-3y=-700..(1)
Case-(ii)
⇒x-100=40%(y+100)
⇒x−100=40100(y+100)
⇒5x-500=2y+200
⇒5x-2y=700...(2)
eq-(1)×2⇒8x-6y=-1400
eq-(2)×3⇒15x-6y=2100
Subtracting above equations , we get
⇒7x=3500
⇒x=500
Putting x=500 in eq-(2)
⇒2500-2y=700
⇒2y=1800
⇒y=900
∴A and B have 500 and 900 respectively
Question 24
Let the number of rows be 'x'
Let the number of students in one row be 'y'
∴Total number of students=xy
Given (i) If one student is extra in a row , there will be 2 rows less
⇒(y+1)(x-2)=xy
⇒xy-2y+x-2=xy
⇒x-2y=2..(1)
(ii) If one student is less in a row there will be 3 rows more
⇒(y-1)(x+3)=xy
⇒xy+3y-x-3=xy
⇒x-3y=-3..(2)
Question 25
Let "x" grams of 18 carat gold is added, thus the amount of 12 carat gold added is (120-x) grams
Given purity of gold is 24 carat
⇒x⋅1824+(120−x)⋅1224=120×1624
⇒187+12(120-x)=120×1624
⇒187+12(120-x)=120×16
⇒189x+12×120-12×x=120×16
⇒6x=120(16-12)
⇒x=120×46−80
∴80 grams of 18 carat gold added with 120-80=40 grams of 12 carat gold
Question 26
Given A and B both can do work in 15 days
(A+B) one day work =115
⇒A's 1 days's workB's 1 days's work=321=32
Let A's 1 day's work be 3x and B's 1 day work is 2x
Then 3x+2x=115
⇒5x=115
⇒x=175
∴A's 1 day work =3×175=125
B's 1 day work =2×175=137.5
∴A and B can do that work in 25 and 37.5 days respectively
Question 27
Let a man's rate be "m"
Let a man's rate be "w"
⇒Given 2m+5w=14
⇒m+w=112
⇒8m+20w=1..(1)
⇒12m+12w=1...(2)
eq-(1)×3⇒24m+60w=3
eq-(2)×2⇒24m+24w=2
Solving above equation
⇒36w=1
⇒w=136
⇒w=136 in (2)
⇒m=118
1 Man would take 18 days to complete the work
Question 28
Let the due speed of train be "x" km/h and scheduled time be y km/h
Therefore , Length of the journey=xy km
Given
(i) (x+30)(y-2)=xy
⇒xy-2x+30y-60=xy
⇒2x-30y+60=0..(1)
(ii) (x-16)(y+2)=xy
⇒xy+2x-15y-30=xy
⇒2x-5y-30=0...(2)
eq-(2)-eq(1)
⇒15y-90=0
⇒15y=90
⇒y=6 hours
Putting y=6 in (1)
⇒2x-180+60=0
⇒2x=120
⇒x=60 km/h
∴The length of the journey is 60×6=360 km
Question 29
Let speed of boat in still water be "x" km/h
Speed of current be "y" km/h
Time to go with the current is 2 hours
Time=DistanceSpeed
⇒40x+y=2
⇒x+y=20..(1)
Time to go against the current is 4 hours
⇒40x−y=4
⇒x-y=10..(2)
eq-(1)+eq-(2)
⇒2x=30
x=15
Putting x=15 in (1)
⇒15+y=20
⇒y=5
⇒Speed of boat in still water and speed of current is 15 km/h and 5 km/h respectively
Question 30
Let the speed of boat in still water be "x" km/h
Speed of current be "y" km/h
Time to go with the current is 4 hours
⇒44x+y=4
⇒x+y=11..(1)
Time to go against the current is 4 hours 48 mins
=288mins
=245 hours
⇒44x−y=245
⇒6x-6y=55..(2)
eq-(2)+eq-(1)×6
⇒12x=121
⇒x=12112 km/h [Speed of boat in still water]
Putting x=12112 in (1)
⇒y=11−12112
⇒y=1112 km/h [Speed of current]
Question 31
Let the plane air speed be "x" km/h and wind speed be "y" km/h
And given that with a head wind it took 3.5 hours
⇒1650x−y=3⋅5=72
⇒x-y=480..(1)
On return it took 3 hours
⇒1650x+y=3
⇒x+y=560..(2)
eq-(1)+eq-(2)
⇒2x=1040
⇒x=520
Putting x=520 in (2)
⇒520+y=560
⇒y=40
∴Plane air speed is 520 km/h and wind speed 40 km/h
Question 32
Let the fixed charges be "x" and cost of food per day be "y"
Given that Bhawana paid 2600 for 20 days
⇒x+20y=2600..(1)
and Divya paid 3020 for 26 days
⇒x+26y=3020..(2)
eq-(2)-eq-(1)
⇒6y=420
⇒y=700
Putting y=70 in (1)
⇒x+1400=2600
⇒x=1200
∴Fixed charges 1200
⇒Cost of food per day 70
Comments
Post a Comment