ML Aggarwal Solution Class 9 Chapter 5 Simultaneous Linear Equations Exercise 5.2

 Exercise 5.2

Question 1

(i)

⇒3x+4y=10..(1)

⇒2x-2y=2...(2)

x=2+2y2


3(2+2y2)+4y=10

6+6y2+4y=10

⇒6+6y+8y=20

⇒6+14y=20

⇒14y=20-6

⇒14y=14

⇒y=1


⇒3x+4y=10

⇒3x=10-4

⇒3x=6

x=63

⇒x=2

∴x=2 ; y=1


(ii)

⇒2x=5y+4

⇒3x-2y+16=0

x=5y+42

3(5y+42)2y+16=0

15y+1222y+16=0

⇒15y+12-4y+32=0

⇒11y+44=0

⇒11y=-44

y=4411=4

⇒y=-4

⇒2x=5(-4)+4

⇒2x=-20+4

⇒2x=-16

x=162

⇒x=-8

∴x=-8 ; y=-4


Question 2

(i) 34x23y=1

38x16y=1

38x=1+16y

x=(1+16y)83

34(1+16y)8323y=1

2+26y23y=1

21=23y13y

1=213.y

1=13y

∴y=3

34x23(3)=1

34x=1+2

34x=3

x=3×43

⇒x=4


(ii) 2x-3y-3=0

23x+4y+12=0

⇒2x-3y-3=0

⇒2x=3y+3

x=3y+32


23(3y+32)+4y+12=0

23×32(y+1)+4y+12=0

⇒y+1+4y+12=0

5y+32=0

5y=32

y=310


∴2x-3y-3=0

2x3(310)3=0

2x+9103=0

2x=3910

2x=30910

x=2120


Question 3

(i) 15x-14y=117

⇒14x-15y=115

⇒14x=115+15y

x=115+15y14


15(115+15y14)14y=117

⇒1725+225y-196y=117×14

⇒1725+225y-196y=1638

⇒29y=1638-1725

⇒29y=-87

y=8729

⇒y=-3


∴15x-14(-3)=117

⇒15x+42=117

⇒15x=117-42

⇒15x=75

x=7515

⇒x=5


(ii) 41x+53y=135

⇒53x+41y=147

⇒53x=147-41y

x=14741y53


⇒41x+53y=135

41(14741y53)+53y=135

⇒6027-1681y+2809y=135×53

⇒6027-1681y+2309y=7155

⇒1128y=1128

y=11281128

⇒y=1


∴41x+53y=135

⇒41x+53(1)=135

⇒41x=135-53

⇒41x=82

x=8241

⇒x=2


Question 4

(i) x6=y6

3x4=1+y

y=3x41

x6=3x416

x6=3x47

x6=3x284

x3=3x282

⇒2x=9x-84

⇒9x-2x=84

⇒7x=84

x=847

⇒x=12

x6=y6

126=y6

⇒y=2+6=8


(ii) x23y=83

2x5y=75

y=2x575

y=2x75

x23(2x75)=83

x4x1415=83

15x4x+1415=83

⇒15x-4x+14=8×5

⇒11x+14=40

⇒11x=40-14

⇒11x=26

x=2611

261123y=83

23y=261183

23y=788833

y=1033×32=511


Question 5

(i) 9-(x-4)=y+7

⇒2(x+y)=4-3y

⇒9-x+4=y+7

⇒13-x=y+7

⇒y=13-x-7

⇒y=6-x


∴2(x+6-x)=4-3(6-x)

⇒2x+12-2x=4-18+3x

⇒12=-14+3x

⇒3x=12+14

⇒3x=26

x=263


∴y=6-x

y=6263

y=83


(ii) 2x+xy6=2

x2x+y3=1

3x2xy3=1

⇒x-y=3

⇒x=3+y

∴2(3+y)+3+yy6=2

6+2y+36=2

6+2y+12=2

2y=2126

2y=41122

2y=92


∴x=3+y

x=394

x=1294

x=34


Question 6

(i) 4x+xy8=17

32x+xy8=17

⇒38x-y=136...(i)

and 2y+x5y+23=2

6y+3x5y23=2

⇒y+3x-2=6

⇒y+3x=6+2

⇒y+3x=8

⇒y=8-3x...(ii)

Equation (ii) in equation (i)

∴33x-8+3x=136

⇒36x=136+8

x=14436

⇒x=4

∴y=8-3(4)

=8-12=-4


(ii) Given : x-3y=3x-1=2x-y

∴x-3y=3x-1

⇒3x-x=1-3y

⇒2x=1-3y

⇒2x+3y=1...(i)


∴3x-1=2x-y

⇒3x-2x=1+y

⇒x=1+y...(ii)

Equation (ii) in equation (i)

∴2(1+y)+3y=1

⇒2+2y+3y=1

⇒5y=1-2

⇒5y=-1

y=15


∴x=y+1

x=15+1

x=1+55

x=45


Question 7

Given : 3x+4y=7

5x+6y=13

5x=136y

6y=1315x

6y=13x5x

y=13x56x


3x+4y=7

3x+4(13x56x)=7

3x+52x206x=7

18+52x206x=7

⇒52x-2=42x

⇒52x-42x=2

⇒10x=2

x=210

x=15

y=13(15)56(15)

y=135565

y=1325565

y=126

⇒y=-2


(ii) 5x9=1y

x+1y=3

x+1y=3

x=31y

x=31y

5(3y1y)9=1y

15y5y9=1y

15y59yy=1y

⇒6y-5=1

⇒6y=1+5

⇒6y=6

y=66

⇒y=1


x=3y1y

x=311

⇒x=2


Question 8

(i) px+qy=p-q

⇒qx-py=p+q

⇒qx=p+q+py

x=q+p(1+y)q

p(q+p(1+y)q)+qy=pq

pq+p2(1+y)q+qy=pq

pq+p2(1+y)q+q2y=pq

⇒pq+p2(1+y)+q2y=pq-q2

⇒p2(1+y)=-q2-q2y

⇒p2(1+y)=-q2(1+y)

⇒p2+p2y=-q2-q2y

⇒p2y+q2y=-q2-p2

⇒y(p2+q2)=-(p2+q2)

⇒y=-1


⇒∴x=q+p(1+y)q

x=q+p(11)q

x=q+p(0)q

x=q+0q

x=qq

⇒x=1

⇒∴x=1

⇒y=-1


(ii) xayb=0

⇒ax+by=a2+b2

xa=yb

x=aby

aaby+by=a2+b2

a2by+by=a2+b2

a2y+b2yb=a2+b2

(a2+b2)y=(a2+b2)b

⇒y=b

⇒∴x=abb.

⇒∴x=a


Question 9

Given 2x+y=23

⇒4x-y=19

⇒y=23-2x

⇒∴4x-23+2x=19

⇒6x=19+23

⇒6x=42

x=426

⇒x=7

⇒∴y=23-2x

⇒y=23-2(7)

⇒y=23-14

⇒y=9

⇒∴x-3y⇒7-3(9)

=7-27=-20


∴x-3y=-20

⇒5y-2x⇒5(9)-2(7)

⇒45-14

⇒31

∴5y-2x=31


Question 10

Given expression ax+by

(i) ax+by=7

When x=2 ; y=1

∴2a+b=7..(i)


(ii) ax+by=1

When x=-1 ; y=1

⇒-a+b=1..(iii)

∴b=1+a

⇒2a+1+a=7

⇒3a+1=7

⇒3a=7-1

⇒3a=6

a=63

⇒a=2

∴b=1+a

b=1+2=3


Question 6

Let the number be xy[10x+y]

Reverse of that number yx[10y+x]

Answer : Given that xy[10x+1]yx[10y+x]=134

101+y10y+x=74

⇒40x+4y=70y+71

⇒33x-66y=0

⇒x-2y=0...(i)

Ans also given that x+y=12...(2)

On solving equation (1) and equation (2)

eq(2)-eq(1)

⇒x+y-x+2y=12

⇒3y=2

⇒y=4


Putting y=4 in (1)

⇒x-8=0

⇒x=8

The required number is 84


Question 7

Let the number be xy[10x+y] and reverse of number is yx[10y+x]

Given : 10x+y10y+x=56

⇒60x+6y=50y+5x

⇒55x-44y=0

⇒5x-4y=0...(1)

And also given that x-y=1..(2)

Put x=y+1 in equation (1)

⇒5y+5-4y=0

⇒y=-5

⇒Put y-5 in equation (2)

⇒x=-4

∴The required number is 45


Question 8

Let the number be xyz[100x+10y+z]

Given that x=4z...(1)

x+y+z=14...(2)

And reverse of the number is zyx[100z+10y+x]

And given that (100x+10y+z)-(100z+10y+x)=594

⇒99x-99z=594

⇒99[x-z]=594

⇒x-z=6..(3)


On solving eq(1) and eq(3)

⇒4z-z=6

⇒3z=6

⇒z=2

Putting z=2 in eq(3) 

⇒x-2=6

⇒x=8

Putting x=8 and z=2 in eq(2)

⇒8+y+2=14

⇒y+4

∴The required number is 842


Question 9

Let the age of marina and her daughter be 'M' and 'D'

Given that

M-4=3(D-4)..(1)

M+6=2(D+6)..(2)

eq(1)⇒M-4=3D-12

⇒M=3D-8..(3)

eq(2)⇒M+6=2D+12

⇒M=2D+6..(4)

From (3) and (4) 

⇒3D-8=2D+6

⇒D=14

Putting D=14 in eq(4)

⇒M=28+6=34

⇒M=34

∴The present age of marina and her daughter is 34 and 14

eq(1)×12⇒144x+120y=1560000

eq(2)×10⇒100x+120y=1340000

Solving above equations 

⇒44x=220000

⇒x=5000

Putting x=5000 in eq (1)

⇒60000+10y=130000

⇒10y=70000

⇒y=7000

Thus the money inverted at 12% is 5000

10% is 7000


Question 22

Let the cost price of table be "x" and list price of their be "y"

Case (i)

Table is sold at a profit of 8%

∴S.P of table x+8x100=108x100

Chair is sold at a discount of 10%

∴S.P of chair =y10y100=90y100

And given that 108x100+90y100=1008

⇒6x+5y=5600..(1)


Case-(ii)

Table is sold at a profit of 10%

∴S.P of table x+10x100=110y100

Chair is sold at a discount of 8%

∴S.P of chair y8y100=92y100

Given that 

110x100+92y100=1028

⇒110x+92y=102800...(2)

On solving eq-(1)+eq-(2)

x=600 , y=400

∴Cost price of table is 600 and list price of chair is 400

Let the money has by A and B is "x" and "y" respectively


Question 23

Case-(i)

Given that 

⇒x+100=75%(y-100)

x+100=375100(y100)

⇒4x+400=3y-300

⇒4x-3y=-700..(1)


Case-(ii)

⇒x-100=40%(y+100)

x100=40100(y+100)

⇒5x-500=2y+200

⇒5x-2y=700...(2)


eq-(1)×2⇒8x-6y=-1400

eq-(2)×3⇒15x-6y=2100

Subtracting above equations , we get

⇒7x=3500

⇒x=500

Putting x=500 in eq-(2) 

⇒2500-2y=700

⇒2y=1800

⇒y=900

∴A and B have 500 and 900 respectively


Question 24

Let the number of rows be 'x'

Let the number of students in one row be 'y'

∴Total number of students=xy

Given (i) If one student is extra in a row , there will be 2 rows less 

⇒(y+1)(x-2)=xy

⇒xy-2y+x-2=xy

⇒x-2y=2..(1)


(ii) If one student is less in a row there will be 3 rows more

⇒(y-1)(x+3)=xy

⇒xy+3y-x-3=xy

⇒x-3y=-3..(2)


Question 25

Let "x" grams of 18 carat gold is added, thus the amount of 12 carat gold added is (120-x) grams

Given purity of gold is 24 carat

x1824+(120x)1224=120×1624

⇒187+12(120-x)=120×1624

⇒187+12(120-x)=120×16

⇒189x+12×120-12×x=120×16

⇒6x=120(16-12)

x=120×4680

∴80 grams of 18 carat gold added with 120-80=40 grams of 12 carat gold


Question 26

Given A and B both can do work in 15 days

(A+B) one day work =115

A's 1 days's workB's 1 days's work=321=32

Let A's 1 day's work be 3x and B's 1 day work is 2x

Then 3x+2x=115

5x=115

x=175

∴A's 1 day work =3×175=125

B's 1 day work =2×175=137.5

∴A and B can do that work in 25 and 37.5 days respectively


Question 27

Let a man's rate be "m"

Let a man's rate be "w"

⇒Given 2m+5w=14

m+w=112

⇒8m+20w=1..(1)

⇒12m+12w=1...(2)

eq-(1)×3⇒24m+60w=3

eq-(2)×2⇒24m+24w=2

Solving above equation 

⇒36w=1

w=136


w=136 in (2)

m=118

1 Man would take 18 days to complete the work


Question 28

Let the due speed of train be "x" km/h and scheduled time be y km/h

Therefore , Length of the journey=xy km

Given 

(i) (x+30)(y-2)=xy

⇒xy-2x+30y-60=xy

⇒2x-30y+60=0..(1)


(ii) (x-16)(y+2)=xy

⇒xy+2x-15y-30=xy

⇒2x-5y-30=0...(2)


eq-(2)-eq(1)

⇒15y-90=0

⇒15y=90

⇒y=6 hours


Putting y=6 in (1) 

⇒2x-180+60=0

⇒2x=120

⇒x=60 km/h

∴The length of the journey is 60×6=360 km


Question 29

Let speed of boat in still water be "x" km/h

Speed of current be "y" km/h

Time to go with the current is 2 hours

Time=DistanceSpeed

40x+y=2

⇒x+y=20..(1)

Time to go against the current is 4 hours 

40xy=4

⇒x-y=10..(2)

eq-(1)+eq-(2)

⇒2x=30

x=15

Putting x=15 in (1)

⇒15+y=20

⇒y=5

⇒Speed of boat in still water and speed of current is 15 km/h and 5 km/h respectively


Question 30

Let the speed of boat in still water be "x" km/h

Speed of current be "y" km/h

Time to go with the current is 4 hours

44x+y=4

⇒x+y=11..(1)

Time to go against the current is 4 hours 48 mins

=288mins

=245 hours

44xy=245

⇒6x-6y=55..(2)

eq-(2)+eq-(1)×6

⇒12x=121

x=12112 km/h [Speed of boat in still water]


Putting x=12112 in (1) 

y=1112112

y=1112 km/h [Speed of current]


Question 31

Let the plane air speed be "x" km/h and wind speed be "y" km/h

And given that with a head wind it took 3.5 hours

1650xy=35=72

⇒x-y=480..(1)

On return it took 3 hours

1650x+y=3

⇒x+y=560..(2)

eq-(1)+eq-(2)

⇒2x=1040

⇒x=520

Putting x=520 in (2)

⇒520+y=560

⇒y=40

∴Plane air speed is 520 km/h and wind speed 40 km/h


Question 32

Let the fixed charges be "x" and cost of food per day be "y"

Given that Bhawana paid 2600 for 20 days

⇒x+20y=2600..(1)

and Divya paid 3020 for 26 days

⇒x+26y=3020..(2)

eq-(2)-eq-(1)

⇒6y=420

⇒y=700

Putting y=70 in (1)

⇒x+1400=2600

⇒x=1200

∴Fixed charges 1200

⇒Cost of food per day 70

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2