ML Aggarwal Solution Class 9 Chapter 5 Simultaneous Linear Equations Exercise 5.2
Exercise 5.2
Question 1
(i)
⇒3x+4y=10..(1)
⇒2x-2y=2...(2)
⇒$x=\frac{2+2y}{2}$
⇒$3\left(\frac{2+2y}{2}\right)+4y=10$
⇒$\frac{6+6y}{2}+4y=10$
⇒6+6y+8y=20
⇒6+14y=20
⇒14y=20-6
⇒14y=14
⇒y=1
⇒3x+4y=10
⇒3x=10-4
⇒3x=6
⇒$x=\frac{6}{3}$
⇒x=2
∴x=2 ; y=1
(ii)
⇒2x=5y+4
⇒3x-2y+16=0
⇒$x=\frac{5y+4}{2}$
⇒$3\left(\frac{5y+4}{2}\right)-2y+16=0$
⇒$\frac{15y+12}{2}-2y+16=0$
⇒15y+12-4y+32=0
⇒11y+44=0
⇒11y=-44
⇒$y=\frac{-44}{11}=-4$
⇒y=-4
⇒2x=5(-4)+4
⇒2x=-20+4
⇒2x=-16
⇒$x=\frac{-16}{2}$
⇒x=-8
∴x=-8 ; y=-4
Question 2
(i) $\frac{3}{4}x-\frac{2}{3}y=1$
⇒$\frac{3}{8}x-\frac{1}{6}y=1$
⇒$\frac{3}{8}x=1+\frac{1}{6}y$
⇒$x=\left(1+\frac{1}{6}y\right)\frac{8}{3}$
∴$\frac{3}{4}\left(1+\frac{1}{6}y\right)\frac{8}{3}-\frac{2}{3}y=1$
⇒$2+\frac{2}{6}y-\frac{2}{3}y=1$
⇒$2-1=\frac{2}{3}y-\frac{1}{3}y$
⇒$1=\frac{2-1}{3}.y$
⇒$1=\frac{1}{3}y$
∴y=3
∴$\frac{3}{4}x-\frac{2}{3}(3)=1$
⇒$\frac{3}{4}x=1+2$
⇒$\frac{3}{4}x=3$
⇒$x=\frac{3\times 4}{3}$
⇒x=4
(ii) 2x-3y-3=0
⇒$\frac{2}{3}x+4y+\frac{1}{2}=0$
⇒2x-3y-3=0
⇒2x=3y+3
⇒$x=\frac{3y+3}{2}$
∴$\frac{2}{3}\left(\frac{3y+3}{2}\right)+4y+\frac{1}{2}=0$
⇒$\frac{2}{3}\times \frac{3}{2}(y+1)+4y+\frac{1}{2}=0$
⇒y+1+4y$+\frac{1}{2}$=0
⇒$5y+\frac{3}{2}=0$
⇒$5y=\frac{-3}{2}$
⇒$y=\frac{-3}{10}$
∴2x-3y-3=0
⇒$2x-3\left(\frac{-3}{10}\right)-3=0$
⇒$2x+\frac{9}{10}-3=0$
⇒$2x=3-\frac{9}{10}$
⇒$2x=\frac{30-9}{10}$
⇒$x=\frac{21}{20}$
Question 3
(i) 15x-14y=117
⇒14x-15y=115
⇒14x=115+15y
⇒$x=\frac{115+15y}{14}$
∴$15\left(\frac{115+15y}{14}\right)-14y=117$
⇒1725+225y-196y=117×14
⇒1725+225y-196y=1638
⇒29y=1638-1725
⇒29y=-87
⇒$y=\frac{-87}{29}$
⇒y=-3
∴15x-14(-3)=117
⇒15x+42=117
⇒15x=117-42
⇒15x=75
⇒$x=\frac{75}{15}$
⇒x=5
(ii) 41x+53y=135
⇒53x+41y=147
⇒53x=147-41y
⇒$x=\frac{147-41y}{53}$
⇒41x+53y=135
⇒$41\left(\frac{147-41y}{53}\right)+53y=135$
⇒6027-1681y+2809y=135×53
⇒6027-1681y+2309y=7155
⇒1128y=1128
⇒$y=\frac{1128}{1128}$
⇒y=1
∴41x+53y=135
⇒41x+53(1)=135
⇒41x=135-53
⇒41x=82
⇒$x=\frac{82}{41}$
⇒x=2
Question 4
(i) $\frac{x}{6}=y-6$
⇒$\frac{3x}{4}=1+y$
⇒$y=\frac{3x}{4}-1$
∴$\frac{x}{6}=\frac{3x}{4}-1-6$
⇒$\frac{x}{6}=\frac{3x}{4}-7$
⇒$\frac{x}{6}=\frac{3x-28}{4}$
⇒$\frac{x}{3}=\frac{3x-28}{2}$
⇒2x=9x-84
⇒9x-2x=84
⇒7x=84
⇒$x=\frac{84}{7}$
⇒x=12
∴$\frac{x}{6}=y-6$
⇒$\frac{12}{6}=y-6$
⇒y=2+6=8
(ii) $x-\frac{2}{3}y=\frac{8}{3}$
⇒$\frac{2x}{5}-y=\frac{7}{5}$
⇒$y=\frac{2x}{5}-\frac{7}{5}$
⇒$y=\frac{2x-7}{5}$
∴$x-\frac{2}{3}\left(\frac{2x-7}{5}\right)=\frac{8}{3}$
⇒$x-\frac{4x-14}{15}=\frac{8}{3}$
⇒$\frac{15x-4x+14}{15}=\frac{8}{3}$
⇒15x-4x+14=8×5
⇒11x+14=40
⇒11x=40-14
⇒11x=26
⇒$x=\frac{26}{11}$
∴$\frac{26}{11}-\frac{2}{3}y=\frac{8}{3}$
⇒$\frac{2}{3}y=\frac{26}{11}-\frac{8}{3}$
⇒$\frac{2}{3}y=\frac{78-88}{33}$
⇒$y=\frac{10}{33}\times \frac{3}{2}=\frac{5}{11}$
Question 5
(i) 9-(x-4)=y+7
⇒2(x+y)=4-3y
⇒9-x+4=y+7
⇒13-x=y+7
⇒y=13-x-7
⇒y=6-x
∴2(x+6-x)=4-3(6-x)
⇒2x+12-2x=4-18+3x
⇒12=-14+3x
⇒3x=12+14
⇒3x=26
⇒$x=\frac{26}{3}$
∴y=6-x
⇒$y=6-\frac{26}{3}$
⇒$y=\frac{-8}{3}$
(ii) $2x+\frac{x-y}{6}=2$
⇒$x-\frac{2x+y}{3}=1$
⇒$\frac{3x-2x-y}{3}=1$
⇒x-y=3
⇒x=3+y
∴2(3+y)$+\frac{3+y-y}{6}=2$
⇒$6+2y+\frac{3}{6}=2$
⇒$6+2y+\frac{1}{2}=2$
⇒$2y=2-\frac{1}{2}-6$
⇒$2y=\frac{4-1-12}{2}$
⇒$2y=\frac{-9}{2}$
∴x=3+y
⇒$x=3-\frac{9}{4}$
⇒$x=\frac{12-9}{4}$
⇒$x=\frac{3}{4}$
Question 6
(i) $4x+\frac{x-y}{8}=17$
⇒$\frac{32x+x-y}{8}=17$
⇒38x-y=136...(i)
and $2y+x\frac{-5y+2}{3}=2$
⇒$\frac{6y+3x-5y-2}{3}=2$
⇒y+3x-2=6
⇒y+3x=6+2
⇒y+3x=8
⇒y=8-3x...(ii)
Equation (ii) in equation (i)
∴33x-8+3x=136
⇒36x=136+8
⇒$x=\frac{144}{36}$
⇒x=4
∴y=8-3(4)
=8-12=-4
(ii) Given : x-3y=3x-1=2x-y
∴x-3y=3x-1
⇒3x-x=1-3y
⇒2x=1-3y
⇒2x+3y=1...(i)
∴3x-1=2x-y
⇒3x-2x=1+y
⇒x=1+y...(ii)
Equation (ii) in equation (i)
∴2(1+y)+3y=1
⇒2+2y+3y=1
⇒5y=1-2
⇒5y=-1
⇒$y=\frac{-1}{5}$
∴x=y+1
⇒$x=\frac{-1}{5}+1$
⇒$x=\frac{-1+5}{5}$
⇒$x=\frac{4}{5}$
Question 7
Given : $\frac{3}{x}+4y=7$
⇒$\frac{5}{x}+6y=13$
⇒$\frac{5}{x}=13-6y$
⇒$6y=13-\frac{15}{x}$
⇒$6y=\frac{13x-5}{x}$
⇒$y=\frac{13x-5}{6x}$
∴$\frac{3}{x}+4y=7$
⇒$\frac{3}{x}+4\left(\frac{13x-5}{6x}\right)=7$
⇒$\frac{3}{x}+\frac{52x-20}{6x}=7$
⇒$\frac{18+52x-20}{6x}=7$
⇒52x-2=42x
⇒52x-42x=2
⇒10x=2
⇒$x=\frac{2}{10}$
⇒$x=\frac{1}{5}$
⇒$y=\frac{13\left(\frac{1}{5}\right)-5}{6\left(\frac{1}{5}\right)}$
⇒$y=\frac{\frac{13}{5}-5}{\frac{6}{5}}$
⇒$y=\frac{\frac{13-25}{5}}{\frac{6}{5}}$
⇒$y=\frac{-12}{6}$
⇒y=-2
(ii) $5 x-9=\frac{1}{y}$
⇒$x+\frac{1}{y}=3$
⇒$x+\frac{1}{y}=3$
⇒$x=3-\frac{1}{y}$
⇒$x=3-\frac{1}{y}$
⇒$5\left(\frac{3 y-1}{y}\right)-9=\frac{1}{y}$
⇒$\frac{15 y-5}{y}-9=\frac{1}{y}$
⇒$\frac{15 y-5-9 y}{y}=\frac{1}{y}$
⇒6y-5=1
⇒6y=1+5
⇒6y=6
⇒$y=\frac{6}{6}$
⇒y=1
⇒$x=\frac{3 y-1}{y}$
⇒$x=\frac{3-1}{1}$
⇒x=2
Question 8
(i) px+qy=p-q
⇒qx-py=p+q
⇒qx=p+q+py
⇒$x=\frac{q+p(1+y)}{q}$
⇒$p\left(\frac{q+p(1+y)}{q}\right)+q y=p-q$
⇒$\frac{p q+p^{2} (1+y)}{q}+qy=p-q$
⇒$\frac{pq+p^{2}(1+y)}{q}+q^{2} y=p-q$
⇒pq+p2(1+y)+q2y=pq-q2
⇒p2(1+y)=-q2-q2y
⇒p2(1+y)=-q2(1+y)
⇒p2+p2y=-q2-q2y
⇒p2y+q2y=-q2-p2
⇒y(p2+q2)=-(p2+q2)
⇒y=-1
⇒∴$x=\frac{q+p(-1+y)}{q}$
⇒$x=\frac{q+p(1-1)}{q}$
⇒$x=\frac{q+p(0)}{q}$
⇒$x=\frac{q+0}{q}$
⇒$x=\frac{q}{q}$
⇒x=1
⇒∴x=1
⇒y=-1
(ii) $\frac{x}{a}-\frac{y}{b}=0$
⇒ax+by=a2+b2
⇒$\frac{x}{a}=\frac{y}{b}$
⇒$x=\frac{a}{b} \cdot y$
⇒$a \cdot \frac{a}{b} \cdot y+b y=a^{2}+b^{2}$
⇒$\frac{a^{2}}{b} y+b y=a^{2}+b^{2}$
⇒$\frac{a^{2} y+b^{2} y}{b}=a^{2}+b^{2}$
⇒$\left(a^{2}+b^{2}\right) y=\left(a^{2}+b^{2}\right) b$
⇒y=b
⇒∴$x=\frac{a}{b} \cdot b .$
⇒∴x=a
Question 9
Given 2x+y=23
⇒4x-y=19
⇒y=23-2x
⇒∴4x-23+2x=19
⇒6x=19+23
⇒6x=42
⇒$x=\frac{42}{6}$
⇒x=7
⇒∴y=23-2x
⇒y=23-2(7)
⇒y=23-14
⇒y=9
⇒∴x-3y⇒7-3(9)
=7-27=-20
∴x-3y=-20
⇒5y-2x⇒5(9)-2(7)
⇒45-14
⇒31
∴5y-2x=31
Question 10
Given expression ax+by
(i) ax+by=7
When x=2 ; y=1
∴2a+b=7..(i)
(ii) ax+by=1
When x=-1 ; y=1
⇒-a+b=1..(iii)
∴b=1+a
⇒2a+1+a=7
⇒3a+1=7
⇒3a=7-1
⇒3a=6
⇒$a=\frac{6}{3}$
⇒a=2
∴b=1+a
b=1+2=3
Question 6
Let the number be xy[10x+y]
Reverse of that number yx[10y+x]
Answer : Given that $\frac{x y[10 x+1]}{y x[10 y+x]}=1 \frac{3}{4}$
⇒$\frac{101+y}{10 y+x}=\frac{7}{4}$
⇒40x+4y=70y+71
⇒33x-66y=0
⇒x-2y=0...(i)
Ans also given that x+y=12...(2)
On solving equation (1) and equation (2)
eq(2)-eq(1)
⇒x+y-x+2y=12
⇒3y=2
⇒y=4
Putting y=4 in (1)
⇒x-8=0
⇒x=8
The required number is 84
Question 7
Let the number be xy[10x+y] and reverse of number is yx[10y+x]
Given : $\frac{10 x+y}{10 y+x}=\frac{5}{6}$
⇒60x+6y=50y+5x
⇒55x-44y=0
⇒5x-4y=0...(1)
And also given that x-y=1..(2)
Put x=y+1 in equation (1)
⇒5y+5-4y=0
⇒y=-5
⇒Put y-5 in equation (2)
⇒x=-4
∴The required number is 45
Question 8
Let the number be xyz[100x+10y+z]
Given that x=4z...(1)
x+y+z=14...(2)
And reverse of the number is zyx[100z+10y+x]
And given that (100x+10y+z)-(100z+10y+x)=594
⇒99x-99z=594
⇒99[x-z]=594
⇒x-z=6..(3)
On solving eq(1) and eq(3)
⇒4z-z=6
⇒3z=6
⇒z=2
Putting z=2 in eq(3)
⇒x-2=6
⇒x=8
Putting x=8 and z=2 in eq(2)
⇒8+y+2=14
⇒y+4
∴The required number is 842
Question 9
Let the age of marina and her daughter be 'M' and 'D'
Given that
M-4=3(D-4)..(1)
M+6=2(D+6)..(2)
eq(1)⇒M-4=3D-12
⇒M=3D-8..(3)
eq(2)⇒M+6=2D+12
⇒M=2D+6..(4)
From (3) and (4)
⇒3D-8=2D+6
⇒D=14
Putting D=14 in eq(4)
⇒M=28+6=34
⇒M=34
∴The present age of marina and her daughter is 34 and 14
eq(1)×12⇒144x+120y=1560000
eq(2)×10⇒100x+120y=1340000
Solving above equations
⇒44x=220000
⇒x=5000
Putting x=5000 in eq (1)
⇒60000+10y=130000
⇒10y=70000
⇒y=7000
Thus the money inverted at 12% is 5000
10% is 7000
Question 22
Let the cost price of table be "x" and list price of their be "y"
Case (i)
Table is sold at a profit of 8%
∴S.P of table $x+\frac{8x}{100}=\frac{108x}{100}$
Chair is sold at a discount of 10%
∴S.P of chair $=y-\frac{10 y}{100}=\frac{90y}{100}$
And given that $\frac{108x}{100}+\frac{90 y}{100}=1008$
⇒6x+5y=5600..(1)
Case-(ii)
Table is sold at a profit of 10%
∴S.P of table $x+\frac{10 x}{100}=\frac{110y}{100}$
Chair is sold at a discount of 8%
∴S.P of chair $y-\frac{8 y}{100}=\frac{92y}{100}$
Given that
$\frac{110 x}{100}+\frac{92y}{100}=1028$
⇒110x+92y=102800...(2)
On solving eq-(1)+eq-(2)
x=600 , y=400
∴Cost price of table is 600 and list price of chair is 400
Let the money has by A and B is "x" and "y" respectively
Question 23
Case-(i)
Given that
⇒x+100=75%(y-100)
⇒$x+100=\frac{375}{100}(y-100)$
⇒4x+400=3y-300
⇒4x-3y=-700..(1)
Case-(ii)
⇒x-100=40%(y+100)
⇒$x-100=\frac{40}{100}(y+100)$
⇒5x-500=2y+200
⇒5x-2y=700...(2)
eq-(1)×2⇒8x-6y=-1400
eq-(2)×3⇒15x-6y=2100
Subtracting above equations , we get
⇒7x=3500
⇒x=500
Putting x=500 in eq-(2)
⇒2500-2y=700
⇒2y=1800
⇒y=900
∴A and B have 500 and 900 respectively
Question 24
Let the number of rows be 'x'
Let the number of students in one row be 'y'
∴Total number of students=xy
Given (i) If one student is extra in a row , there will be 2 rows less
⇒(y+1)(x-2)=xy
⇒xy-2y+x-2=xy
⇒x-2y=2..(1)
(ii) If one student is less in a row there will be 3 rows more
⇒(y-1)(x+3)=xy
⇒xy+3y-x-3=xy
⇒x-3y=-3..(2)
Question 25
Let "x" grams of 18 carat gold is added, thus the amount of 12 carat gold added is (120-x) grams
Given purity of gold is 24 carat
⇒$x \cdot \frac{18}{24}+(120-x) \cdot \frac{12}{24}=120 \times \frac{16}{24}$
⇒187+12(120-x)=$120\times \frac{16}{24}$
⇒187+12(120-x)=120×16
⇒189x+12×120-12×x=120×16
⇒6x=120(16-12)
⇒$x=\frac{120 \times 4}{6}-80$
∴80 grams of 18 carat gold added with 120-80=40 grams of 12 carat gold
Question 26
Given A and B both can do work in 15 days
(A+B) one day work $=\frac{1}{15}$
⇒$\frac{A\text {'s 1 days's work}}{B\text {'s 1 days's work}}=\frac{\frac{3}{2}}{1}=\frac{3}{2}$
Let A's 1 day's work be 3x and B's 1 day work is 2x
Then $3 x+2 x=\frac{1}{15}$
⇒$5 x=\frac{1}{15}$
⇒$x=\frac{1}{75}$
∴A's 1 day work $=3 \times \frac{1}{75}=\frac{1}{25}$
B's 1 day work $=2 \times \frac{1}{75}=\frac{1}{37.5}$
∴A and B can do that work in 25 and 37.5 days respectively
Question 27
Let a man's rate be "m"
Let a man's rate be "w"
⇒Given $2m+5w=\frac{1}{4}$
⇒$m+w=\frac{1}{12}$
⇒8m+20w=1..(1)
⇒12m+12w=1...(2)
eq-(1)×3⇒24m+60w=3
eq-(2)×2⇒24m+24w=2
Solving above equation
⇒36w=1
⇒$w=\frac{1}{36}$
⇒$w=\frac{1}{36}$ in (2)
⇒$m=\frac{1}{18}$
1 Man would take 18 days to complete the work
Question 28
Let the due speed of train be "x" km/h and scheduled time be y km/h
Therefore , Length of the journey=xy km
Given
(i) (x+30)(y-2)=xy
⇒xy-2x+30y-60=xy
⇒2x-30y+60=0..(1)
(ii) (x-16)(y+2)=xy
⇒xy+2x-15y-30=xy
⇒2x-5y-30=0...(2)
eq-(2)-eq(1)
⇒15y-90=0
⇒15y=90
⇒y=6 hours
Putting y=6 in (1)
⇒2x-180+60=0
⇒2x=120
⇒x=60 km/h
∴The length of the journey is 60×6=360 km
Question 29
Let speed of boat in still water be "x" km/h
Speed of current be "y" km/h
Time to go with the current is 2 hours
$Time=\frac{\text{Distance}}{\text{Speed}}$
⇒$\frac{40}{x+y}=2$
⇒x+y=20..(1)
Time to go against the current is 4 hours
⇒$\frac{40}{x-y}=4$
⇒x-y=10..(2)
eq-(1)+eq-(2)
⇒2x=30
x=15
Putting x=15 in (1)
⇒15+y=20
⇒y=5
⇒Speed of boat in still water and speed of current is 15 km/h and 5 km/h respectively
Question 30
Let the speed of boat in still water be "x" km/h
Speed of current be "y" km/h
Time to go with the current is 4 hours
⇒$\frac{44}{x+y}=4$
⇒x+y=11..(1)
Time to go against the current is 4 hours 48 mins
=288mins
$=\frac{24}{5}$ hours
⇒$\frac{44}{x-y}=\frac{24}{5}$
⇒6x-6y=55..(2)
eq-(2)+eq-(1)×6
⇒12x=121
⇒$x=\frac{121}{12}$ km/h [Speed of boat in still water]
Putting $x=\frac{121}{12}$ in (1)
⇒$y=11-\frac{121}{12}$
⇒$y=\frac{11}{12}$ km/h [Speed of current]
Question 31
Let the plane air speed be "x" km/h and wind speed be "y" km/h
And given that with a head wind it took 3.5 hours
⇒$\frac{1650}{x-y}=3 \cdot 5= \frac{7}{2}$
⇒x-y=480..(1)
On return it took 3 hours
⇒$\frac{1650}{x+y}=3$
⇒x+y=560..(2)
eq-(1)+eq-(2)
⇒2x=1040
⇒x=520
Putting x=520 in (2)
⇒520+y=560
⇒y=40
∴Plane air speed is 520 km/h and wind speed 40 km/h
Question 32
Let the fixed charges be "x" and cost of food per day be "y"
Given that Bhawana paid 2600 for 20 days
⇒x+20y=2600..(1)
and Divya paid 3020 for 26 days
⇒x+26y=3020..(2)
eq-(2)-eq-(1)
⇒6y=420
⇒y=700
Putting y=70 in (1)
⇒x+1400=2600
⇒x=1200
∴Fixed charges 1200
⇒Cost of food per day 70
Comments
Post a Comment