ML Aggarwal Solution Class 9 Chapter 9 Logarithms MCQs
MCQs
Question 1
If log√3 27 = x, then the value of x is
(a) 3
(b) 4
(c) 6
(d) 9
Sol :
⇒$\log _{\sqrt{3}} 27=x$
⇒$(\sqrt{3})^{x}=27$
⇒$(3)^{\frac{1}{2} x x}=3^{3}$
⇒$3^{\frac{x}{2}}=3^{3}$
⇒$\frac{x}{2}=3$
⇒x=6...(c)
Question 2
If log5 (0.04) = x, then the value of x is
(a) 2
(b) 4
(c) -4
(d) -2
Sol :
⇒$\log _{5}(0.04)=x$
⇒$5^{x}=0.04=\frac{4}{100}=\frac{1}{25}=5^{-2}$
∴x=-2...(d)
Question 3
If log0.5 64 = x, then the value of x is
(a) -4
(b) -6
(c) 4
(d) 6
Question 4
If $\log _{10} \sqrt[3]{5} x=-3$, then the value of x is
(a) $\frac{1}{5}$
(b) $-\frac{1}{5}$
(c) -1
(d) 5
Sol :
$\log _{\sqrt[3]{5}} x=-3,(\sqrt[3]{5})^{-3}=x$
$x=\left(5^{\frac{1}{3}}\right)^{-3}=5^{\frac{1}{3}(-3)}=5^{-1}$
$x=\frac{1}{5}$
(b)
Question 5
If log (3x + 1) = 2, then the value of x is
(b) 99
(c) 33
(d) $\frac{19}{3}$
Sol :
⇒log (3x+1)=2=log 100 (∵ log 100=2)
∴3x+1=100
⇒3x=100-1=99
⇒$x=\frac{99}{3}=33$
(c)
Question 6
The value of $2+\log _{10}(0.01)$ is
(a) 4
(b) 3
(c) 1
(d) 0
⇒$2+\log _{10}(0.01)$
⇒2+(-20)=2-2=0
(d)
Question 7
The value of $\frac{\log 8-\log 2}{\log 32}$ is
(a) $\frac{2}{5}$
(b) $\frac{1}{4}$
(c) $-\frac{2}{5}$
(d) $\frac{1}{3}$
Sol :
⇒$\frac{\log 8-\log 2}{\log 32}=\frac{\log \frac{8}{2}}{\log 2^{5}}$
⇒$=\frac{\log 4}{\log 2^{5}}=\frac{\log 2^{2}}{\log 2^{5}}$
⇒$=\frac{2 \log 2}{5 \log 2}=\frac{2}{5}$
(a)
Comments
Post a Comment