ML Aggarwal Solution Class 9 Chapter 9 Logarithms Exercise 9.1
Exercise 9.1
Question 1
Convert the following to logarithmic form:
(i) 52 = 25
⇒log525=2
(ii) a5 =64
⇒loga64=5
(iii) 7x =100
⇒log7100=x
(iv) 9° = 1
⇒log91=0
(v) 61= 6
⇒log66=1
(vi) 3-2 =$\frac{1}{9}$
⇒$\log _{3} \frac{1}{9}=-2$
(vii) 10-2 = 0.01
⇒log100.01=-2
(viii) $(81)^{\frac{3}{4}} = 27$
⇒log8127$=\frac{3}{4}$
Question 2
Convert the following into exponential form:
(i) log2 32 = 5
⇒25=32
(ii) log3 81=4
⇒34=81
(iii) log3 $\frac{1}{3}$= -1
⇒$3^{-1}=\frac{1}{3}$
(iv) log3 4= $\frac{2}{3}$
⇒$(8)^{\frac{2}{3}}=4$
(v) log8 32= $\frac{5}{3}$
⇒$(8)^{\frac{5}{3}}=32$
(vi) log10 (0.001) = -3
⇒10-3=0.001
(vii) log2 0.25 = -2
⇒2-2=0.25
(viii) loga ($\frac{1}{a}$) =-1
Question 3
By converting to exponential form, find the values of:
(i) log2 16
⇒Let, log2 16=x
⇒(2)x=16
⇒(2)x=2×2×2×2
⇒(2)x=(2)4
∴x=4
(ii) log5 125
⇒Let, log5 125=x
⇒(5)x=125
(iii) log4 8
⇒Let, log4 8=x
⇒(2×2)x=2×2×2
⇒(2)2x=(2)3
⇒2x=3
∴$x=\frac{3}{2}$
(iv) log9 27
⇒ log9 27=x
⇒9x=27
⇒(3×3)x=3×3×3
⇒(3)2x=33
∴$x=\frac{3}{2}$
(v) log10 (.01)
⇒log10 (.01)=x
⇒(10)x=0.01
⇒$(10)^{x}=\frac{1}{100}$
⇒$(10)^{x}=\frac{1}{10} \times \frac{1}{10}$
⇒$(10)^{x}=\frac{1}{(10)^{2}}$
⇒(10)x=(10)-2
∴x=-2
(vi) log7 $\frac{1}{7}$
⇒ log7 $\frac{1}{7}=x$
⇒$(7)^{x}=\frac{1}{7}$
⇒(7)x=(7)-1
∴x=-1
(vii) log5 256
⇒log5 256=x
⇒(0.5)x=256
⇒$\left(\frac{5}{10}\right)^{x}=256$
⇒$\left(\frac{1}{2}\right)^{x}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
⇒(2)-x=(2)8
⇒-x=8
∴x=-8
(viii) log2 0.25
Question 4
Solve the following equations for x.
Question 5
Given log10 a=b, express 102b-3 in terms of a.
Sol :
⇒(10)h=a
Now $10^{2h-3}=\frac{(10)^{2 b}}{(10)^{3}}=\frac{\left(10^{b}\right)^{2}}{10 \times 10 \times 10}=\frac{\left(10^{b}\right)^{2}}{1000}$
$=\frac{a^{2}}{1000}$
Question 6
Given log10 x= a, log10 y = b and log10 z =c,
(i) Write down 102a-3 in terms of x.
(ii) Write down 103b-1 in terms of y.
(iii) If log10 P $=2 a+\frac{b}{2}-3 c$, express P in terms of x, y and z.
Question 7
If log10 = a and log10 y = b, find the value of xy.
Sol :
Then xy=(10)a×(10)b=(10)a+b
Question 8
Given log10 a = m and log10 b = n, express $\frac{a^{3}}{b^{2}}$ in terms of m and n.
Sol :
Given log10 a = m and log10 b = n,
Then (10)m= a and (10)n =b
$\frac{a^{3}}{b^{2}}=\frac{\left(10^{m}\right)^{3}}{\left(10^{n}\right)^{2}}=\frac{(10)^{3 m}}{(10)^{2 n}}$
=(10)3m-2n
Question 9
Given log10 a = 2a and log10 y $=\frac{-b}{2}$
(i) Write 10a in terms of x.
(ii) Write 102b+1 in terms of y.
(iii) If log10 P= 3a -2b, express P in terms of x and y .
and log10 y$=\frac{b}{2}$ ,
⇒$(10)^{\frac{b}{2}}=y$
(i) $10^{a}=\left(10^{2a}\right)^{\frac{1}{2}}=(x)^{\frac{1}{2}}=\sqrt{x}$
(ii) (10)2b+1=(10)2b×(10)1
$=10^{4}\left(\frac{b}{2}\right) \times 10^{1}$
$=\left(10^{\frac{b}{2}}\right)^{4} \times 10=y^{4} \times 10=10 y^{4}$
(iii) log10 P=3a-2b
⇒log10 P$=\frac{3}{2}(2 a)-4\left(\frac{b}{2}\right)$
⇒log10 P$=\frac{3}{2}\left(\log _{10} x\right)-4=\left(\log _{10} y\right)$
⇒log10 P$=\log _{10}(x)^{\frac{3}{2}}-\log _{10} y^{4}$
⇒$\log _{10} P=\log _{10}\left(\frac{(x)^{\frac{3}2{}}}{y^{4}}\right)$
⇒$P=\frac{(x)^{\frac{3}{2}}}{y^{4}}$
Question 10
If log2 y = x and log3 z = x, find 72x in terms of y and z.
⇒y=2x and z=3x..(i)
⇒72x=(2×2×2×3×3)x
=(23×32)x
=(2x)3×(3x)2
=y3.z2 [From (i)]
Hence , 72x=y3.z2
Question 11
If log2 x = a and log5 y = a, write 1002a-1 in terms of x and y.
∴x=2a and y=5a
1002a-1=(2×2×5×5)2a-1
=(22×52)2a-1=24a-2×54a-2
$=\frac{2^{4 a}}{2^{2}} \times \frac{5^{4 a}}{5^{2}}$
$=\frac{\left(2^{a}\right)^{4} \times\left(5^{a}\right)^{4}}{4 \times 25}$
$=\frac{x^{4} \times y^{4}}{100}$
$=\frac{x^{4} y^{4}}{100}$
Comments
Post a Comment