ML Aggarwal Solution Class 9 Chapter 9 Logarithms Exercise 9.1

 Exercise 9.1

Question 1

Convert the following to logarithmic form:

(i) 52 = 25

⇒log525=2


(ii) a5 =64

⇒loga64=5


(iii) 7x =100

⇒log7100=x


(iv) 9° = 1

⇒log91=0


(v) 61= 6

⇒log66=1


(vi) 3-2 =19

log319=2


(vii) 10-2 = 0.01

⇒log100.01=-2


(viii) (81)34=27

⇒log8127=34


Question 2

Convert the following into exponential form:

(i) log32 = 5

⇒25=32


(ii) log81=4

⇒34=81


(iii) log13= -1

31=13


(iv) log4= 23

(8)23=4


(v) log8 32= 53

(8)53=32


(vi) log10 (0.001) = -3

⇒10-3=0.001


(vii) log0.25 = -2

⇒2-2=0.25


(viii) log(1a) =-1

a1=1a


Question 3

By converting to exponential form, find the values of:

(i) log16

⇒Let, log16=x

⇒(2)x=16

⇒(2)x=2×2×2×2

⇒(2)x=(2)4

∴x=4


(ii) log125

⇒Let, log125=x

⇒(5)x=125

⇒(5)x=5×5×5

⇒(5)x=(5)3

∴x=3


(iii) log4 8

⇒Let, log4 8=x

⇒(4)x=8

⇒(2×2)x=2×2×2

⇒(2)2x=(2)3

⇒2x=3

x=32


(iv) log9 27

⇒ log9 27=x

⇒9x=27

⇒(3×3)x=3×3×3

⇒(3)2x=33

⇒2x=3

x=32


(v) log10 (.01)

⇒log10 (.01)=x

⇒(10)x=0.01

(10)x=1100

(10)x=110×110

(10)x=1(10)2

⇒(10)x=(10)-2

∴x=-2


(vi) log7 17

⇒ log7 17=x

(7)x=17

⇒(7)x=(7)-1

∴x=-1


(vii) log5 256

⇒log5 256=x

⇒(0.5)x=256

(510)x=256

(12)x=2×2×2×2×2×2×2×2

⇒(2)-x=(2)8

⇒-x=8

∴x=-8


(viii) log2 0.25

⇒Let, log2 0.25=x
⇒(2)x=0.25
⇒(2)x=25100
(2)x=14
⇒(2)x=(2)-2
∴x=-2


Question 4

Solve the following equations for x.

(i)  logx=2
⇒32
⇒9=x
∴x=9

(ii) log25=2
⇒x2=25
⇒x2=5×5 
⇒x2=52
∴x=5

(iii) log10 x=-2
⇒(10)-2=x
⇒x=(10)-2
x=1(10)2
x=1100
∴x=0.01

(iv) logx=12
(4)12=x
x=(4)12
x=(2×2)12
x=(2)2×12
⇒x=(2)1
∴x=2

(v) log11=1
⇒(x)1=11
∴x=2

(vi) logx14=1
(x)1=14
⇒(x)1=(4)-1
∴x=4

(vii) log81x=32
x=81132
=(34)32=34×32
⇒36
=3×3×3×3×3×3=729

(viii) logx=2.5
log9x=2.5=52
x=(9)52=(32)52=32×52=35
=3×3×3×3×3=243

(ix) logx=-1.5
1.5=32
x=(4)32=(22)3=22×(32)
=23=123=12×2×2=18

(x) log5x=2
(5)2=x
(5)2×12=x
⇒(5)1=x
∴x=5

(xi) log0.001=-3
(x)3=11000
(x)3=1(10)3
∴(x)-3=10-3
∴x=10

(xii) log3(x+1)=2
(3)2=x+1
⇒3=x+1
⇒x+1=3
⇒x=3-1
∴x=2

(xiii) log4(2x+3)=32
(4)32=2x+3
(2×2)32=2x+3
(2)2×32=2x+3
(2×2)32=2x+3
⇒2×2×2=2x+3
⇒8=2x+3
⇒2x=8-3
∴2x=5
x=52

(xiv) log32x=3
(32)3=x
[(2)13]3=x
(2)13×3=x
⇒(2)1=x
∴x=2

(xv) log2(x21)=3
⇒(2)3=x2-1
⇒2×2×2=x2-1
⇒8=x2-1
⇒x2-1=8
⇒x2=8+1
⇒x2=9
∴x=±3

(xvi) log x=-1
⇒(10)-1=x
⇒x=(10)-1
x=110

(xvii) log (2x-3)=1
⇒(10)-1=2x-3
⇒10=2x-3
⇒2x=10+3
⇒2x=13
x=132=612

(xviii) logx=2,0,13
⇒log x=-2
⇒(10)-2=x
1100=x
x=1100

When log x=0
⇒(10)0=x
⇒x=1

When logx=13
(10)13=x
x=310

Hence, x=1100,1310


Question 5

Given  log10 a=b, express 102b-3 in terms of a.

Sol :

Given  log10 a=b

⇒(10)h=a

Now 102h3=(10)2b(10)3=(10b)210×10×10=(10b)21000

=a21000


Question 6

Given log10 x= a, log10 y = b and log10 z =c,

(i) Write down 102a-3 in terms of x.

(ii) Write down 103b-1 in terms of y.

(iii) If log10 P =2a+b23c, express P in terms of x, y and z.

Sol :

Given that log10 x=a
⇒(10)a=x..(1)
⇒log10 y=b⇒(10)b=y...(2)
⇒log10 z=c⇒(10)c=z...(3)

(i) 102a-3=(10)2a(10)3=(10a)210×10×10=(x)21000=x21000

(ii) 103b1=(10)3b(10)1=(10b)310=(y)310=y310

(iii) log10 P=2a+b23c

Substitute the value of a,b and c from equation (1), (2) and (3)
⇒log10 P=2log10x+12log10y3log10z
log10P=log10(x)2+log10(y)12log10(2)3
log10P=log10(x2×y12)log10z3
log10P=log10(x2yz3)
P=x2yz3

Question 7

If log10 = a and log10 y = b, find the value of xy.

Sol :

Given : That log10 x=a
⇒(10)a=x and (10)b=y

Then xy=(10)a×(10)b=(10)a+b


Question 8

Given log10 a = m and log10 b = n, express a3b2 in terms of m and n.

Sol :

Given log10 a = m and log10 b = n,

Then (10)m= a and (10)n =b

a3b2=(10m)3(10n)2=(10)3m(10)2n

=(10)3m-2n


Question 9

Given log10 a = 2a and log10 =b2

(i) Write 10a in terms of x.

(ii) Write 102b+1 in terms of y.

(iii) If log10 P= 3a -2b, express P in terms of x and y .

Sol :
Given that log10 a = 2a
⇒(10)2a=x

and log10 y=b2 ,

(10)b2=y

(i) 10a=(102a)12=(x)12=x


(ii) (10)2b+1=(10)2b×(10)1

=104(b2)×101

=(10b2)4×10=y4×10=10y4


(iii) log10 P=3a-2b

⇒log10 P=32(2a)4(b2)

⇒log10 P=32(log10x)4=(log10y)

⇒log10 P=log10(x)32log10y4

log10P=log10((x)32y4)

P=(x)32y4


Question 10

If log2 y = x and log3 z = x, find 72x in terms of y and z.

Sol :
⇒log2 y = x and log3 z = x

⇒y=2x and z=3x..(i)

⇒72x=(2×2×2×3×3)x

=(23×32)x

=(2x)3×(3x)2

=y3.z2  [From (i)]

Hence , 72x=y3.z


Question 11

If log2 x = a and log5 y = a, write 1002a-1 in terms of x and y.

Sol :
⇒log2 x =a and log5 y =a

∴x=2and y=5a

1002a-1=(2×2×5×5)2a-1

=(22×52)2a-1=24a-2×54a-2

=24a22×54a52

=(2a)4×(5a)44×25

=x4×y4100

=x4y4100

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2