ML Aggarwal Solution Class 9 Chapter 9 Logarithms Exercise 9.1
Exercise 9.1
Question 1
Convert the following to logarithmic form:
(i) 52 = 25
⇒log525=2
(ii) a5 =64
⇒loga64=5
(iii) 7x =100
⇒log7100=x
(iv) 9° = 1
⇒log91=0
(v) 61= 6
⇒log66=1
(vi) 3-2 =19
⇒log319=−2
(vii) 10-2 = 0.01
⇒log100.01=-2
(viii) (81)34=27
⇒log8127=34
Question 2
Convert the following into exponential form:
(i) log2 32 = 5
⇒25=32
(ii) log3 81=4
⇒34=81
(iii) log3 13= -1
⇒3−1=13
(iv) log3 4= 23
⇒(8)23=4
(v) log8 32= 53
⇒(8)53=32
(vi) log10 (0.001) = -3
⇒10-3=0.001
(vii) log2 0.25 = -2
⇒2-2=0.25
(viii) loga (1a) =-1
Question 3
By converting to exponential form, find the values of:
(i) log2 16
⇒Let, log2 16=x
⇒(2)x=16
⇒(2)x=2×2×2×2
⇒(2)x=(2)4
∴x=4
(ii) log5 125
⇒Let, log5 125=x
⇒(5)x=125
(iii) log4 8
⇒Let, log4 8=x
⇒(2×2)x=2×2×2
⇒(2)2x=(2)3
⇒2x=3
∴x=32
(iv) log9 27
⇒ log9 27=x
⇒9x=27
⇒(3×3)x=3×3×3
⇒(3)2x=33
∴x=32
(v) log10 (.01)
⇒log10 (.01)=x
⇒(10)x=0.01
⇒(10)x=1100
⇒(10)x=110×110
⇒(10)x=1(10)2
⇒(10)x=(10)-2
∴x=-2
(vi) log7 17
⇒ log7 17=x
⇒(7)x=17
⇒(7)x=(7)-1
∴x=-1
(vii) log5 256
⇒log5 256=x
⇒(0.5)x=256
⇒(510)x=256
⇒(12)x=2×2×2×2×2×2×2×2
⇒(2)-x=(2)8
⇒-x=8
∴x=-8
(viii) log2 0.25
Question 4
Solve the following equations for x.
Question 5
Given log10 a=b, express 102b-3 in terms of a.
Sol :
⇒(10)h=a
Now 102h−3=(10)2b(10)3=(10b)210×10×10=(10b)21000
=a21000
Question 6
Given log10 x= a, log10 y = b and log10 z =c,
(i) Write down 102a-3 in terms of x.
(ii) Write down 103b-1 in terms of y.
(iii) If log10 P =2a+b2−3c, express P in terms of x, y and z.
Question 7
If log10 = a and log10 y = b, find the value of xy.
Sol :
Then xy=(10)a×(10)b=(10)a+b
Question 8
Given log10 a = m and log10 b = n, express a3b2 in terms of m and n.
Sol :
Given log10 a = m and log10 b = n,
Then (10)m= a and (10)n =b
a3b2=(10m)3(10n)2=(10)3m(10)2n
=(10)3m-2n
Question 9
Given log10 a = 2a and log10 y =−b2
(i) Write 10a in terms of x.
(ii) Write 102b+1 in terms of y.
(iii) If log10 P= 3a -2b, express P in terms of x and y .
and log10 y=b2 ,
⇒(10)b2=y
(i) 10a=(102a)12=(x)12=√x
(ii) (10)2b+1=(10)2b×(10)1
=104(b2)×101
=(10b2)4×10=y4×10=10y4
(iii) log10 P=3a-2b
⇒log10 P=32(2a)−4(b2)
⇒log10 P=32(log10x)−4=(log10y)
⇒log10 P=log10(x)32−log10y4
⇒log10P=log10((x)32y4)
⇒P=(x)32y4
Question 10
If log2 y = x and log3 z = x, find 72x in terms of y and z.
⇒y=2x and z=3x..(i)
⇒72x=(2×2×2×3×3)x
=(23×32)x
=(2x)3×(3x)2
=y3.z2 [From (i)]
Hence , 72x=y3.z2
Question 11
If log2 x = a and log5 y = a, write 1002a-1 in terms of x and y.
∴x=2a and y=5a
1002a-1=(2×2×5×5)2a-1
=(22×52)2a-1=24a-2×54a-2
=24a22×54a52
=(2a)4×(5a)44×25
=x4×y4100
=x4y4100
Comments
Post a Comment