ML Aggarwal Solution Class 9 Chapter 9 Logarithms Exercise 9.2
Exercise 9.2
Question 1
Simplify the following :
$=\frac{\log 3^{2}-\log 3}{\log 3^{3}}$
$=\frac{2 \log 3-\log 3}{3 \log 3}$ (Power Law)
$=\frac{\log 3}{3 \log 3}=\frac{1}{3}$
Question 2
Evaluate the following:
Sol :
$=\log \left((10)^{1} \div(10)^{\frac{1}{3}}\right)$
$=\log \left(10^{1-\frac{1}{3}}\right)$
$=\log \left(10^{\frac{2}{3}}\right)$
$=\frac{2}{3} \log 10=\frac{2}{3}(1)=\frac{2}{3}$
(ii) $2+\frac{1}{2} \log \left(10^{-3}\right)$
Sol :
$=2+\frac{1}{2} \times(-3) \log 10$
$=2-\frac{3}{2} \log 10=2-\frac{3}{2}(1)$
$=2-\frac{3}{2}=\frac{4-3}{2}=\frac{1}{2}$
(iii) $\log 5+\log 8-\frac{1}{2} \log 4$
Sol :
$=\log (5)^{2}+\log 8-\frac{1}{2} \log (2)^{2}$
$=\log 25+\log 8-\frac{1}{2} \times 2 \log 2$
$=\log 25+\log 8-\log 2=\log \left(\frac{25 \times 8}{2}\right)$
$=\log \left(\frac{25 \times 4}{1}\right)$
=log (100)
=log (10)2
=2 log 10=2(1)=2
(iv) $2 \log 10^{3}+3 \log 10^{-2}-\frac{1}{3} \log 5^{-3}+\frac{1}{2} \log 4$
Sol :
$=2 \times 3 \log 10+3(-2) \log 10-\frac{1}{3}(-3) \log 5+\frac{1}{2}$
=log (2)2
=6 log 10-6 log 10+$\frac{3}{3} \log 5+\frac{1}{2} \times 2 \log 2$
=0+1 log 5 +log 2=log 5+log 2
=log (5×2)
=log(10)=1
(v) $2 \log 2+\log 5-\frac{1}{2} \log 36-\log \frac{1}{30}$
Sol :
$=\log (2)^{2}+\log 5-\frac{1}{2} \log (6)^{2}-\log \left(\frac{1}{30}\right)$
$=\log 4+\log 5-\frac{1}{2} \times 2 \log 6-\log \frac{1}{30}$
$=\log 4+\log 5-\frac{1}{2} \times 2 \log 6-\log \frac{1}{30}$
=log 4+log 5-log 6-(log 1-log 30)
=log 4+log 5-log 6-log 1+log 30
=(log 4+log 5+log 30)-(log 6+log 1)
=log (4×5×30)-log (6×1)
$=\log \frac{4 \times 5 \times 30}{6 \times 1}=\log \frac{4 \times 5 \times 5}{1 \times 1}$
=log 100
=log (10)2
=2 log 10
=2(1)=2
(vi) $2 \log 5+\log 3+3 \log 2-\frac{1}{2} \log 36-2 \log 10$
Sol :
=log (5)2+log 3+log (2)3$-\frac{1}{2} \log (6)^{2}-2 \log 10$
=log 25+log 3+log 8$-\frac{1}{2} \times 2 \log 6-2 \log 10$
=log 25+log 3+log 8-log 6-log (10)2
=log (25×3×8)-log 6-log 100
$=\log \left(\frac{25 \times 3 \times 8}{6 \times 100}\right)=\log \left(\frac{1 \times 3 \times 8}{6 \times 4}\right)$
$=\log \left(\frac{24}{24}\right)$
=log 1=0
(vii) $\log 2+16 \log \frac{16}{15}+12 \log \frac{25}{24}+7 \log \frac{81}{80}$
Sol :
=log 2+16(log 16-log 15)+12(log 25-log 24)+7(log 81-log 80)
=log 2+16[log (2)4-log (3×5)]+12[log (5)2-log(3×2×2×2)+7[log(3×3×3×3)-log (2)4×5]
=log 2+16[4 log 2-(log 3+log 5)]+12[2 log 5-log(3×23)]+7[log(3)4-(log 4+log 5)]
=log 2+16[4 log 4- log 3 - log 5]+12[2 log 5-log (3×23)]+7[log 34-(log 4+ log 5)]
=log 2+16[4 log 4-log 3-log 5]+12[2 logs 5 -(log 3-log 23)]+7[4 log 3-log 4-log 5]
=log 2+ 64 log 2-16 log 3-16 log 5+24 log 5-12 log 3-12 log 23+28 log 3-7 log 24-7 log 5
=log 2+ 64 log 2-16 log 3-16 log 5+24 log 5-12 log 3-36 log 2+28 log 3-28 log 2-7 log 5
=(log 2+ 64 log 2-36 log 2-28 log 2)+(-16 log 3-12 log 3+28 log 3)+(-16 log 5+24 log 5-7 log 5)+28 log 3)+(-16 log 5+24 log 5-7 log 5)
(viii) $2 \log _{10} 5+\log _{10} 8-\frac{1}{2} \log _{10} 4$
Sol :
$=\log _{10}(5)^{2}+\log _{10} 8-\log _{10}(4)^{\frac{1}{2}}$
$=\log _{10} 25+\log _{10} 8-\log _{10}(2)^{2 \times \frac{1}{2}}$
$=\log _{10} 25+\log _{10} 8-\log _{10} 2$
$=\log _{10}\left(\frac{25 \times 8}{2}\right)=\log _{10}(25 \times 4)$
$=\log _{10} 100=\log _{10}(10)^{2}$
$=2 \log _{10} 10=2(1)=2$
Question 3
$=\frac{1}{2} \log 9+2 \log 3-\log 6+\log 2-2$
$=\log 9^{\frac{1}{2}}+\log 3^{2}-\log 6+\log 2-\log 100$
=log 3+log 9-log 6+log 2-log 100
$=\log \frac{3 \times 9 \times 2}{6 \times 100}$
$=\log \frac{9}{100}$
Question 4
Prove the following :
(i) log10 4 ÷ log10 2 = log3 9L.H.S=log10 4 ÷ log10 2
L.H.S=log10 25 + log10 4
=log10 25×4
=2 log10 10
=2×1=2 (∵log10 a=1)
Hence, L.H.S=R.H.S
Question 5
If x = 100)a , y = (10000)b and z = (10)c, express $\log \frac{10 \sqrt{y}}{x^{2} z^{3}}$ in terms of a,b,c
=(10)2a
y=(10000)b=[(10)4]b
=(10)4b
z=(10)c=(10)c
Now, $\log \frac{10 \sqrt{y}}{x^{2} z^{3}}$
=(log 10+log √y)-(log x2+logz3)
$=\left(1+\log (y)^{\frac{1}{2}}\right)-\left(\log (x)^{2}+\log (z)^{3}\right)$ [∵ log 10=1]
$=\left(1+\frac{1}{2} \log y\right)-(2 \log x+3 \log z)$
Substituting the value of x, y and z, we get
$=\left(1+\frac{1}{2} \log (10)^{4 b}\right)-\left(2 \log (10)^{2 a}+3 \log (10)^{c}\right)$
$=\left(1+\frac{1}{2} \times 4 \mathrm{~b} \log 10\right)-(2 \times 2 a \log 10+3 \times c \log 10)$
$=\left(1+\frac{1}{2} \times 4 \mathrm{~b} \times 1\right)-(2 \times 2 a \times 1+3 \times c \times 1)$ [∵log 10=1]
=(1+2b)-(4a+3c)
=1+2b-4a-3c
=1-4a+2b-3c
Question 6
If a = log10 x, find the following in terms of a :
Sol :
(i) Given that,
⇒a=log10 x
⇒(10)a=x
⇒x=(10)a
(ii) $\log _{10} \sqrt[5]{x^{2}}$
$=\log _{10}\left(x^{2}\right)^{\frac{1}{5}}$
$=\log _{10}(x)^{\frac{2}{5}}$
$=\frac{2}{5} \log _{10} x$
$=\frac{2}{5}(a)=\frac{2}{5} a$
(iii) x=(10)a=log10 5x
=log10 5(10)a
=log10 5+log10 10
=log10 5+a(1)
=a+log10 5
Question 7
If $a=\log \frac{2}{3}, b=\log \frac{3}{5}$ and $c=2 \log \sqrt{\frac{5}{2}}$
Find the value of
(i) a+b+c
(ii) 5a+b+c
Sol :
Given that :
$a=\log \frac{2}{3}, b=\log \frac{3}{5}, c=2 \log \sqrt{\frac{5}{2}}$
(i) a+b+c$=\log \frac{2}{3}+\log \frac{3}{5}+2 \log \sqrt{\frac{5}{2}}$
$=(\log 2-\log 3)+(\log 3-\log 5)+2 \log \left(\frac{5}{2}\right)^{\frac{1}{2}}$
$=\log 2-\log 3+\log 3-\log 5+2 \times \frac{1}{2} \log \left(\frac{5}{2}\right)$
=log 2-log 3+log 3-log 5+log \frac{5}{2}$
=log 2+(-log 3+log 3)-log 5+log 5-log 2$
=(log 2-log 2)+0+(log 5-log 5)
=0+0+0=0
(ii) 5a+b+c=50
=1
Question 8
If $x=\log \frac{3}{5}, y=\log \frac{5}{4}$ and $z=2 \log \frac{\sqrt{3}}{2}$ Find the value of
(i) x+y-z
(ii) 3x+y-z
Sol :
$x=\log \frac{3}{5}, y=\log \frac{5}{4}, z=2 \log \frac{\sqrt{3}}{2}$
∴x=log 3-log 5
y=log 5-log 4
$z=\log \left(\frac{\sqrt{3}}{2}\right)^{2}=\log \frac{3}{4}$
=log 3-log 4
(i) Now, x+y-z=log 3-log 5+log 5-log -log 3-log 4
=0
(ii) 3x+y-3
=30=1
Question 9
If x = log1012, y = log4 2×log10 9 and z = log10 0.4, find the values of
(i) x-y-z
(ii) 7x-y-z
(i) x-y-z
= log10 12-log4 2×log10 9- log10 0.4
= log10 (3×4)-log4 41/2×log10 32- log10 $\frac{4}{10}$
=$=\log _{10} 3+\log _{10} 4-\frac{1}{2} \log _{4} 4 \times 2 \log _{10} 3-\left(\log _{10} 4-\log _{10} 10\right)$
$=\log _{10} 3+\log _{10} 4-\frac{1}{2} \times 1 \times 2 \log _{10} 3-\log _{10} 4+1$
$=\log _{10} 3+\log _{10} 4-\log _{10} 3-\log _{10} 4+1$
=1
(ii) 7x-y-z=71=0
Question 10
If log V + log 3 = log π + log 4 + 3 log r, find V in terns of other quantities.
⇒$\log (3 \mathrm{~V})=\log 4 \pi r^{3}$
⇒$3 \mathrm{~V}=4 \pi r^{3}$
⇒$V=\frac{4}{3} \pi r^{3}$
Question 11
Given 3 (log 5 – log 3) – (log 5-2 log 6) = 2 – log n , find n.
⇒3 log 5-3 log 3- log 5+2 log 6=2- log n
⇒2 log 5-3 log 3+2 log 6=2-log n
⇒$\log (5)^{2}-\log (3)^{3}+\log (6)^{2}=2(1)-\log n$
⇒log 25-log 27+log 36=2 log 10- log n [∵log 10=1]
⇒log n=2 log 10-log 25+log 27-log 36
⇒log n=log (10)2-log 25+log 27-log 36
⇒log n=log 100-log 25+log 27-log 36
⇒log n=(log 100+log 27)-(log 25+log 36)
⇒log n=log (100×27)-log (25×36)
⇒$\log n=\log \left(\frac{100 \times 27}{25 \times 36}\right)$
⇒$\log n=\log \left(\frac{4 \times 27}{1 \times 36}\right)$
⇒$\log n=\log \left(\frac{1 \times 27}{1 \times 9}\right)$
⇒log n=log 3
⇒n=3
Question 12
Given that log10 y + 2 log10 x= 2, express y in terms of x.
Question 13
Express log10 2+1 in the from log10 x.
Question 14
Question 15
Question 16
Question 17
If $\frac{\log x}{2}=\frac{\log y}{3},$ find the value of $\frac{y^{4}}{x^{6}}$
Sol :
⇒$\frac{\log x}{2}=\frac{\log y}{3}$
⇒3 log x=2log y
⇒$\log x^{3}=\log y^{2}$
⇒$x^{3}=y^{2}$
Squaring both sides, we get
⇒$x^{6}=y^{4}$
⇒$y^{4}=x^{6}$
⇒$\frac{y^{4}}{x^{6}}=1$
Question 18
Solve for x:
(i) log x+log 5=2 log 3
Sol :
⇒log x+log 5=2 log 3
⇒log x=2 log 3- log 5
⇒$\log x=\log (3)^{2}-\log 5$
⇒log x=log 9-log 5
⇒$\log x=\log \left(\frac{9}{5}\right)$
∴$x=\frac{9}{5}$
(ii) $\log _{3} x-\log _{3} 2=1$
Sol :
⇒$\log _{3} x-\log _{3} 2=1$
⇒$\log _{3} x=\log _{3} 2+1$
⇒$\log _{y} x=\log _{3} 2+\log _{3} 3 ~\left(\because \log _{3} 3=1\right)$
⇒$\log _{3} x=\log _{3}(2 \times 3) $
⇒$ \log _{3} x=\log _{3} 6$
∴x=6
(iii) $x=\frac{\log 125}{\log 25}$
Sol :
⇒$x=\frac{\log (5)^{3}}{\log (5)^{2}}$$x=\frac{\log (5)^{3}}{\log (5)^{2}}$
⇒$x=\frac{3 \log 5}{2 \log 5}=\frac{3}{2}$
∴$x=\frac{3}{2}$
(iv) $\frac{\log 8}{\log 2} \times \frac{\log 3}{\log \sqrt{3}}=2 \log x$
Sol :
⇒$\frac{\log (2)^{3}}{\log 2} \times \frac{\log 3}{\log (3)^{\frac{1}{2}}}=2 \log x$
⇒$\frac{3 \log 2}{\log 2} \times \frac{\log 3}{\frac{1}{2} \log 3}=2 \log x$
⇒$3(1) \times \frac{1}{\left(\frac{1}{2}\right)}=2 \log x $
⇒$3 \times \frac{2}{1}=2 \log x$
⇒2 log x=6
⇒$\log x=\frac{6}{2}$
⇒log x=3
⇒$x=(10)^{3}$
⇒x=1000
Question 19
Given $2 \log _{10} x+1=\log _{10} 250$, find
(i) x
(ii) $\log _{10} 2 x$
⇒$\log _{10} x^{2}+1=\log _{10} 250$ $\left[\log _{a} m^{n}=n \log m\right]$
⇒$\log _{10} x^{2} \times 10=\log _{10} 250$ $\left[\log _{10} 10=1\right]$
⇒$\log _{10} x^{2} \times \log _{10} 10=\log _{10} 250$
⇒$x^{2} \times 10=250$
⇒$x^{2}=\frac{250}{10}$
⇒$x^{2}=25$
⇒$(x)^{2}=(5)^{2}$
∴x=5
(ii) x=5 (proved in (i) above)
⇒$\log _{10} 2 x=\log _{10} 2 \times 5$ [Putting x=5]
⇒$=\log _{10} 10=1$ $\left[\log _{10} 10=1\right]$
Question 20
If $\frac{\log x}{\log 5}=\frac{\log y^{2}}{\log 2}=\frac{\log 9}{\log \frac{1}{3}},$ find x and y.
Sol :
⇒$\frac{\log x}{\log 5}=\frac{\log y^{2}}{\log 2}=\frac{\log 9}{\log \frac{1}{3}}$
Taking first and third terms,
⇒$\frac{\log x}{\log 5}=\frac{\log 9}{\log \frac{1}{3}}$
⇒$\log x=\frac{\log 9}{\log \frac{1}{3}} \times \log 5$
⇒$\log x=\frac{3 \log (3 \times 3)}{\log 1-\log 3} \times \log 5$
⇒$\log x=\frac{\log (3)^{2}}{0-\log 3} \times \log 5$ [log 1=0]
⇒$\log x=\frac{2 \log 3}{-\log 3} \times \log 5$
⇒$\log x=\frac{2 \log 3}{\log 3} \times \log 5$
⇒log x=-2(1)×log 5
⇒log x=-2log 5
⇒log x=log (5)-2
⇒x=(5)-2
⇒$x=\frac{1}{(5)^{2}}$
⇒$x=\frac{1}{25}$
taking second and third terms,
⇒$\frac{\log y^{2}}{\log 2}=\frac{\log 9}{\log \left(\frac{1}{3}\right)}$
⇒$\log y^{2}=\frac{\log 9}{\log \left(\frac{1}{3}\right)} \times \log 2$
⇒$\log y^{2}=\frac{\log (3)^{2}}{\log 1-\log 3} \times \log 2$
⇒$\log y^{2}=\frac{2 \log 3}{0-\log 3} \times \log 2$ [log 1=0]
⇒$\log y^{2}=\frac{2 \log 3}{-\log 3} \times \log 2$
⇒$\log y^{2}=\frac{-2 \log 3}{\log 3} \times \log 2$
⇒$\log y^{2}=-2 \times \log 2 $
⇒$\log y^{2}=\log (2)^{-2}$
⇒$y^{2}=(2)^{-2}$
⇒$y=(2)^{-2 \times \frac{1}{2}}$
⇒$y=(2)^{-1}$
⇒$y=\frac{1}{2}$
Question 21
Prove the following :
(i) $3^{\log 4}=4^{\log 3}$
Sol :
⇒$3^{\log 4}=4^{\log 3}$ is true
if $\log 3^{\log 4}=\log 4^{\log 3}$ (Taking log both sides)
if log 4.log 3= log 3.log 4
if $\log _{2} 2 \cdot \log 3=\log 3 \cdot \log 2^{2}$
if 2log 2×log 3=log 3×2log 2
if 2 log 2 log 3=2 log 2 log 3
Which is true
Hence proved
(ii) $27^{\log 2}=8^{\log 3}$
⇒if log 2 log 27=log 3 log 8
⇒ if $\log 2 \log 3^{3}=\log 3 \log 2^{3}$
⇒if log 2.3 log 3=log 3.3 log 2
⇒if 3 log 2.log 3=3.log 2 log 3
Which is true
Hence proved
Question 22
Solve the following equations :
(i) log (2x + 3) = log 7
⇒2x+3=7
⇒2x=7-3
⇒2x=4
⇒$x=\frac{4}{2}$
∴x=2
(ii) log (x +1) + log (x – 1) = log 24
⇒log(x+1)(x-1)=log 24
⇒$\log \left(x^{2}-1\right)=\log 24$
⇒$x^{2}-1=24$
⇒$x^{2}=24+1$
⇒$x^{2}=25$
⇒$x^{2}=(5)^{2}$
∴$x^{2}=5$
(iii) log (10x + 5) – log (x – 4) = 2
⇒$\log \frac{(10 x+5)}{(x-4)}=2(\log 10)$ [∴log 10=1]
⇒$\log \frac{10 x+5}{x-4}=\log (10)^{2}$
⇒$\log \left(\frac{10 x+5}{x-4}\right)=\log 100$
⇒$\frac{10 x+5}{(x-4)}=100$
⇒10x+5=100(x-4)
⇒10x+5=100x-400
⇒10x-100x=-400-5
⇒-90x=-405
⇒$x=\frac{-405}{-90}$
⇒$x=\frac{405}{90}=\frac{81}{18}=\frac{9}{2}$
∴x=4.5
(iv) $\log _{10} 5+\log _{10}(5 x+1)=\log _{10}(x+5)+1$
⇒$\log _{10} 5 \times(5 x+1)=\log _{10}(x+5)+\log _{10} 10$ $\left[\log _{10} 10=1\right]$
⇒$\log _{10} 5(5 x+1)=\log _{10}[10 \times(x+5)]$
⇒5(5x+1)=10(x+5)
⇒25x+5=10x+5
⇒25x-10x=50-5
⇒15x=45
⇒$x=\frac{45}{15}$
∴x=3
(v) log (4y – 3) = log (2y + 1) – log3
⇒$\log 4 y-3=\log \frac{(2 y+1)}{3}$
⇒$4 y-3=\frac{2 y+1}{3}$
⇒3(4y-3)=2y+1
⇒12y-9=2y+1
⇒12y-2y=1+9
⇒10y=10
⇒$y=\frac{10}{10}=1$
∴y=1
(vi) $\log _{10}(x+2)+\log _{10}(x-2)=\log _{10} 3+3 \log _{10} 4$
⇒$\log _{10}(x+2)(x-2)=\log _{10} 3+\log _{10}(4)^{3}$
⇒$\log _{10}\left(x^{2}-2^{2}\right)=\log _{10} 3+\log _{10}(4 \times 4 \times 4)$
⇒$\log _{10}\left(x^{2}-4\right)=\log _{10} 3+\log _{10} 64$
⇒$\log _{10}\left(x^{2}-4\right)=\log _{10} 3 \times 64$
⇒$x^{2}-4=3 \times 64$
⇒$x^{2}-4=192$
⇒$x^{2}=192+4$
⇒$x^{2}=196$
⇒$x^{2}=(14)^{2}$
∴x=14
Hence proved
(vii) log(3x + 2) + log(3x – 2) = 5 log 2.
Question 23
Solve for x :
Sol :
⇒$\log _{3}(x+1)-1=3+\log _{3}(x-1)$
⇒$\log _{3}(x+1)-3 \log (x-1)=3+1$
⇒$\log _{3} \frac{x+1}{x-1}=4=4 \times 1=4 \log _{3} 3$ $\left(\because \log _{a} a=1\right)$
⇒$\log _{3} \frac{x+1}{x-1}=\log _{3} 3^{4}=\log _{3} 81$
∴$\frac{x+1}{x-1}=\frac{81}{1}$
⇒81x-81=x+1
⇒81x-x=1+81
⇒80x=82
∴$x=\frac{82}{80}=\frac{41}{40}=1 \frac{1}{40}$
Question 24
Solve for $x: 5^{\log x}+3^{\log x}=3^{\log x+1}-5^{\log x-1}$
Sol :
⇒$5^{\log x}+3^{\log x}=3^{\log x+1}-5^{\log x-1}$
⇒$5^{\log x}+3^{\log x}=3^{\log x} \cdot 3^{1}-5^{\log x} \cdot 5^{-1}$
⇒$5^{\log x}+3^{\log x}=3.3^{\log x}-\frac{1}{5} \cdot 5^{\log x}$
⇒$5^{\log x}+\frac{1}{5} \cdot 5^{\log x}=3.3^{\log x}-3^{\log x}$
⇒$\left(1+\frac{1}{5}\right)\left(5^{\log x}\right)=(3-1)\left(3^{\log x}\right)$
⇒$ \frac{6}{5}\left(5^{\log x}\right)=2 \times 3^{\log x}$
⇒$\frac{5^{\log x}}{3^{\log x}}=\frac{2 \times 5}{6}=\left(\frac{5}{3}\right)^{1}$
⇒$\left(\frac{5}{3}\right)^{\log x}=\left(\frac{5}{3}\right)^{1}$
Comparing, we get
⇒log x=1=log 10
∴x=10
Question 25
If $\log \left(\frac{x-y}{2}\right)=\frac{1}{2}(\log x+\log y),$ prove that $x^{2}+y^{2}=6 x y$
Sol :
⇒$\log \left(\frac{x-y}{2}\right) \doteq \frac{1}{2}(\log x+\log y)$
⇒$\log \left(\frac{x-y}{2}\right)=\frac{1}{2} \log x y$ [∵log m+log n=log mn]
⇒$\log \left(\frac{x-y}{2}\right)=\log (x y)^{\frac{1}{2}}$
⇒$ \Rightarrow \frac{x y}{2}=(x y)^{\frac{1}{2}}$
Question 26
If $x^{2}+y^{2}=23 x y,$ Prove that $\log \frac{x+y}{5}=\frac{1}{2}(\log x+\log y)$
Sol :
⇒Given $x^{2}+y^{2}=23 x y$
⇒$x^{2}+y^{2}=25 x y-2 x y$
⇒$(x)^{2}+(y)^{2}+2 \times x \times y=25 x y$
⇒$(x+y)^{2}=25 x y$
⇒$\frac{(x+y)^{2}}{25}=x y$
Taking log on both sides, we get
⇒$\log \frac{(x+y)^{2}}{25}=\log x y$
⇒$\log \left(\frac{x+y}{5}\right)^{2}=\log x+\log y$
⇒$2 \log \frac{x+y}{5}=\log x+\log y$
⇒$\log \frac{x+y}{5}$
⇒$=\frac{1}{2} \quad(\log x+\log y)$ Proved
Question 27
If $p=\log _{10} 20$ and $q=\log _{10} 25$, find the value of x if $2 \log _{10}(x+1)=2 p-q$
Question 28
Show that:
(i) $\frac{1}{\log _{2} 42}+\frac{1}{\log _{3} 42}+\frac{1}{\log _{7} 42}=1$
Sol :(ii) $\frac{1}{\log _{8} 36}+\frac{1}{\log _{9} 36}+\frac{1}{\log _{18} 36}=2$
Comments
Post a Comment