ML Aggarwal Solution Class 9 Chapter 12 Pythagoras Theorem MCQs
MCQs
Question 1
In a ∆ABC, if AB = 6√3 cm, BC = 6 cm and AC = 12 cm, then ∠B is
(a) 120°
(b) 90°
(c) 60°
(d) 45°
∵AB2+BC2=(6√3)2+(6)2
=108+36=144
and AC2=122=144
∴√B=90°
Ans (b) (Converse of Pythagoras Theorem)
Question 2
If the sides of a rectangular plot are 15 m and 8 m, then the length of its diagonal is
(a) 17 m
(b) 23 m
(c) 21 m
(d) 17 cm
and breadth (b)=8m
∴Diagonal=√l2+b2
=√152+82
=√225+64=√289=17 m
Ans (a)
Question 3
The lengths of the diagonals of a rhombus are 16 cm and 12 cm. The length of the side of the rhombus is
(a) 9 cm
(b) 10 cm
(c) 8 cm
(d) 20 cm
∵Diagonals of rhombus bisects each other at right angles
Length of side$=\sqrt{\left(\frac{\text { First diagonal }}{2}\right)^{2}+\left(\frac{\text { Second diagonal }}{2}\right)^{2}}$
$=\sqrt{\left(\frac{16}{2}\right)^{2}+\left(\frac{12}{2}\right)^{2}}$
$=\sqrt{8^{2}+6^{2}}$
=√64+36=√100=10 cm
Ans (b)
Question 4
If a side of a rhombus is 10 cm and one of the diagonals is 16 cm, then the length of the other diagonals is
(a) 6 cm
(b) 12 cm
(c) 20 cm
(d) 12 cm
∵The diagonals of rhombus bisect each other at right angles.
∴In right ΔAOB
AO$=\frac{16}{2}=8$ , AB=10 cm
∴AB2=AO2+BO2
⇒102=82+BO2
⇒BO2=100-64=36=(6)2
∴BO=6 cm
∴Other diagonal BD=6×2 =12 cm
Ans (b)
Question 5
If a ladder 10 m long reaches a window 8 m above the ground, then the distance of the foot of the ladder from the base of the wall is
(a) 18 m
(b) 8 m
(c) 6 m
(d) 4 m
∴Distance of ladder from the base of wall
$=\sqrt{A C^{2}-A B^{2}}=\sqrt{10^{2}-8^{2}}$
$=\sqrt{100-64}=\sqrt{36}$
=6 m
Ans (c)
Question 6
A girl walks 200 m towards East and then she walks ISO m towards North. The distance of the girl from the starting point is
(a) 350 m
(b) 250 m
(c) 300 m
(d) 225 m
Distance of girls from the starting point (OB)
$=\sqrt{\mathrm{OA}^{2}+\mathrm{AB}^{2}}=\sqrt{(200)^{2}+(150)^{2}}$
=√40000+22500
=√62500=250 m
Ans (b)
Question 7
A ladder reaches a window 12 m above the ground on one side of the street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 9 m high. If the length of the ladder is 15 m, then the width of the street is
(a) 30 m
(b) 24 m
(c) 21 m
(d) 18 m
In right ΔABC
⇒AC2=AB2+BC2
⇒BC2=AC2-AB2
⇒BC2=152-122
⇒BC2=225-144=81=(9)2
∴Width of street EB=EC+CB
=9+12=21 m
Comments
Post a Comment