ML Aggarwal Solution Class 9 Chapter 18 Trigonometric Ratios and Standard Angles Exercise 18.1
Exercise 18.1
Question 1
Sol :
(i)
$7 \sin 30^{\circ} \cos 60^{\circ}$
$\Rightarrow 7\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$
$\Rightarrow \frac{7}{4}$
(ii)
$3 \sin ^{2} 45^{\circ}+2 \cos ^{2} 60^{\circ}$
$\Rightarrow 3 \cdot\left(\frac{1}{\sqrt{2}}\right)^{2}+2 \cdot\left(\frac{1}{2}\right)^{2}$
$\Rightarrow \frac{3}{2}+\frac{2}{4}$
$\Rightarrow \frac{3}{2}+\frac{1}{2} $
$ \Rightarrow \frac{3+1}{2} $
$ \Rightarrow \frac{4}{2}$
⇒2
(iii) $\cos ^{2} 45^{\circ}+\sin ^{2} 60^{\circ}+\sin ^{2} 30^{\circ}$
$\Rightarrow\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}$
$\Rightarrow \frac{1}{2}+\frac{3}{4}+\frac{1}{4}$
$\Rightarrow \frac{2+3+1}{4}=\frac{6}{4}=\frac{3}{2}$
(iv)
$\cos 90^{\circ}+\cos ^{2} 45^{\circ} \sin 30^{\circ} \tan 45^{\circ}$
$\Rightarrow 0+\left(\frac{1}{\sqrt{2}}\right)^{2} \cdot\left(\frac{1}{2}\right) \cdot(1)$
$\Rightarrow 0+\frac{1}{2} \cdot \frac{1}{2}$
$\Rightarrow 0+\frac{1}{4}$
$\Rightarrow \frac{0+1}{4}=\frac{1}{4}$
Question 2
Sol :
(i)
$\frac{\sin ^{2} 45^{\circ}+\cos ^{2} 45}{\tan ^{2} 60}$
$\Rightarrow \frac{\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}}{(\sqrt{3})^{2}}$
$\Rightarrow \frac{\frac{1}{2}+\frac{1}{2}}{3}$
$\Rightarrow \frac{1+1}{2 \cdot 3}$
$\Rightarrow \frac{2}{6}$
$\Rightarrow \frac{1}{3}$
(ii)
$\frac{\sin 30^{\circ}-\sin 90^{\circ}+2 \cos 0^{\circ}}{\tan 30^{\circ} \times \tan 60^{\circ}}$
$\Rightarrow \frac{\frac{1}{2}-1+2(1)}{\frac{1}{\sqrt{3}} \times \sqrt{3}}$
$\Rightarrow \frac{1}{2}+1$
$\Rightarrow \frac{1+2}{2}$
$\Rightarrow \frac{3}{2}$
(iii)
⇒$\frac{4}{3} \tan ^{2} 30^{\circ}+\sin ^{2} 60^{\circ}-3 \cos ^{2} 60^{\circ}+\frac{3}{4} \tan ^{2} 60^{\circ}-2 \tan ^{2} 45^{\circ}$
⇒$\frac{4}{3}\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}-3\left(\frac{1}{2}\right)^{2}+\frac{3}{4}(\sqrt{3})^{2}-2 \cdot(1)^{2}$
⇒$\frac{4}{3} \cdot \frac{1}{3}+\frac{3}{4}-\frac{3}{4}+\frac{9}{4}-2$
⇒$\frac{4}{9}+\frac{9}{4}-2$
⇒$\frac{4 \times 4+9 \times 9-2 \times 36}{36}=\frac{16+81-12}{36}$
⇒$\frac{25}{36}$
Question 3
(i) $\frac{\sin 60^{\circ}}{\cos ^{2} 45^{\circ}}-3 \tan 30^{\circ}+5 \cos 90^{\circ}$
$\Rightarrow \frac{\sqrt{3} / 2}{(1 / \sqrt{2})^{2}}-3 \frac{1}{\sqrt{3}}+5(0)$
$\Rightarrow \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}-\frac{3}{\sqrt{3}}+0$
$\Rightarrow \sqrt{3}-\frac{3}{\sqrt{3}}$
$\Rightarrow \frac{\sqrt{3} \cdot \sqrt{3}-3}{\sqrt{3}}$
$\Rightarrow \frac{3-3}{\sqrt{3}}$
⇒0
(ii)
$2 \sqrt{2} \cos 45^{\circ} \cos 60^{\circ}+2 \sqrt{3} \sin 30^{\circ} \tan 60^{\circ}-\cos 0^{\circ}$
$\Rightarrow 2 \sqrt{2} \frac{1}{\sqrt{2}} \cdot \frac{1}{2}+2 \sqrt{3} \cdot \frac{1}{2} \cdot \sqrt{3}-1$
⇒1+3-1
⇒3
(iii)
$\frac{4}{5} \tan ^{2} 60^{\circ}-\frac{2}{\sin ^{2} 30^{\circ}}-\frac{3}{4} \tan ^{2} 30^{\circ}$
$\Rightarrow \frac{4}{5}(\sqrt{3})^{2}-\frac{2}{\left(\frac{1}{2}\right)^{2}}-\frac{3}{4}\left(\frac{1}{\sqrt{3}}\right)^{2}$
$\Rightarrow \quad \frac{4}{5} \cdot 3-\frac{2}{\left(\frac{1}{4}\right)}-\frac{3}{4} \cdot \frac{1}{3}$
$\Rightarrow \quad \frac{12}{5}-8-\frac{1}{4}$
$\Rightarrow \frac{12 \times 4-8 \times 5 \times 4-1 \times 5}{5 \times 4}$
⇒$\frac{48-160-5}{20}$
⇒$-\frac{117}{20}$
⇒$-5 \frac{17}{20}$
Question 4
Sol :
(i)
LHS
$\Rightarrow \cos ^{2} 30+\sin 30+\tan ^{2} 45^{\circ}$
$\Rightarrow\left(\frac{\sqrt{3}}{2}\right)^{2}+\frac{1}{2}+1^{2}$
$\Rightarrow \frac{3}{4}+\frac{1}{2}+1$
$\Rightarrow \frac{3+2+4}{4}$
$\Rightarrow \frac{9}{4}$
$\Rightarrow 2 \frac{1}{4}$
Question 5
Sol :
(i) Given : x=30°
LHS⇒tan 2x
⇒tan2(20°)
⇒tan 60°
⇒√3
RHS$\Rightarrow \frac{2 \tan x}{1-\tan ^{2} x}$
$\Rightarrow \frac{2 \cdot \tan 30^{\circ}}{1-\tan ^{2} 30}$
$\Rightarrow \frac{2 \cdot \frac{1}{\sqrt{3}}}{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}$
$\Rightarrow \frac{\frac{2}{\sqrt{3}}}{1-\frac{1}{3}}$
$\Rightarrow \frac{\frac{2}{\sqrt{3}}}{\frac{3-1}{3}}$
$\Rightarrow \frac{\frac{2}{\sqrt{3}}}{\frac{2}{3}}$
$\Rightarrow \frac{3}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}}$
$\Rightarrow \frac{3 \sqrt{3}}{3}$
⇒√3
∴LHS=RHS
(ii)
Given : x=15°
LHS⇒4sinx.cos4x.sin6x
⇒4sin(2×15).cos(4×15).sin(6×15)
⇒4sin30°×cos 60°×sin 90°
⇒$4 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1$
⇒1
∴LHS=RHS
Question 6
Sol :
(i)
$\sqrt{\frac{1-\cos ^{2} 30^{\circ}}{1-\sin ^{2} 30^{\circ}}}$ $\left(\because \sin ^{2} A+\cos ^{2} A=1\right)$
$\Rightarrow \sqrt{\frac{\sin ^{2} 30}{\cos ^{2} 30^{\circ}}}$
$\Rightarrow \sqrt{\frac{\left(\frac{1}{2}\right)^{2}}{\left(\frac{\sqrt{3}}{2}\right)^{2}}}$
$\Rightarrow \sqrt{\frac{\frac{1}{4}}{\frac{3}{4}}}$
$\Rightarrow \frac{1}{\sqrt{3}}$
(ii)
⇒$\frac{\sin 45^{\circ} \cdot \cos 45^{\circ} \cdot \cos 60^{\circ}}{\sin 60^{\circ} \cos 30^{\circ} \cdot \tan 45^{\circ}}$
⇒$\frac{\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{2}}{\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot 1}$
⇒$\frac{\frac{1}{2}}{\frac{3}{2}}$
⇒$\frac{1}{3}$
Question 7
Sol :
Given : θ=30°
(i)
LHS⇒$\sin 2 \theta=\sin 2.30^{\circ}$
=sin 60
$=\frac{\sqrt{3}}{2}$
RHS⇒2sinθcosθ$=2 \cdot \sin 30^{\circ} \cdot \cos 30^{\circ}$
$=2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2}$
$=\frac{\sqrt{3}}{2}$
∴LHS=RHS
(ii)
LHS
$\Rightarrow \cos 2 \theta=\cos 2.30^{\circ}$
$=\cos 60^{\circ}$
$=\frac{1}{2}$
RHS
$\Rightarrow 2 \cos ^{2} \theta-1=2 \cdot \cos ^{2} \cdot 30^{\circ}-1$
$=2 \cdot\left(\frac{\sqrt{3}}{2}\right)^{2}-1$
$=2\frac{\sqrt{3}}{4}-1$
$=\frac{3-2}{2}$
$=\frac{1}{2}$
∴LHS=RHS
(iii)
LHS⇒sin3θ
$=\sin 3\times 30^{\circ}$
$=\sin 90^{\circ}$
=1
RHS
$\Rightarrow 3 \sin \theta-4 \sin ^{3} \theta$
$\Rightarrow 3 \cdot \sin 30^{\circ}-4 \sin ^{3} 30^{\circ}$
$\Rightarrow 3 \cdot \frac{1}{2}-4\left(\frac{1}{2}\right)^{3}$
$\Rightarrow \frac{3}{2}-\frac{4}{8}$
$\Rightarrow \frac{3-1}{2}$
$\Rightarrow \frac{2}{2}=1$
∴LHS=RHS
(iv)
LHS⇒cos3θ⇒cos3×30°
⇒cos 90°
⇒0
RHS⇒$4 \cos ^{3} \theta-3 \cos \theta$
⇒$4 \cdot \cos ^{3} 30^{\circ}-3 \cos 30^{\circ}$
⇒$4 \cdot\left(\frac{\sqrt{3}}{2}\right)^{3}-3 \cdot \frac{\sqrt{3}}{2}$
⇒$4 \cdot \frac{3 \sqrt{3}}{8}-\frac{3 \sqrt{3}}{2}$
⇒$\frac{3 \sqrt{3}}{2}-\frac{3 \sqrt{3}}{2}$
⇒0
∴LHS=RHS
Question 8
Sol :
Given : θ=30°
⇒2sinθ : sin2θ
⇒$\frac{2 \sin \theta}{\sin 2 \theta}=\frac{2 \cdot \sin 30^{\circ}}{\sin 2\times 30^{\circ}}$
$=\frac{2 \times \frac{1}{2}}{\sin 60}$
$=\frac{1}{\frac{\sqrt{3}}{2}}$
$\frac{2 \sin \theta}{\sin 2 \theta}=\frac{2}{\sqrt{3}}$
∴2sinθ : sin2θ=2 : √3
Question 9
Sol :
Given : A=30° ; B=60°
LHS⇒sin(A+B)
⇒sin(30°+60°)
⇒sin 90°
⇒1
RHS⇒sinA+sinB
⇒sin30°+sin60°
⇒$\frac{1}{2}+\frac{\sqrt{3}}{2}$
⇒$\frac{1+\sqrt{3}}{2}$
∴LHS≠RHS
ie., $\sin (A+B) \neq \sin A+\sin B$.
Question 10
Given : A=60° ; B=30°
Sol :
(i)
LHS⇒sin(A+B)=sin(60+30)
=sin 90=1
RHS⇒sinAcosB+cosAsinB
⇒sin60°cos30°+cos60°sin30°
⇒$\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{1}{2} \cdot \frac{1}{2}$
⇒$\frac{3}{4}+\frac{1}{4}=\frac{3+1}{4}=\frac{4}{4}$
=1
(ii)
A=60° ; B=30°
LHS⇒cos(A+B)=cos(60°+30°)
=cos90°=0
RHS⇒cosA.cosB-sinAsinB
⇒cos60°.cos30°-sin60°.sin30°
⇒$\frac{1}{2} \cdot \frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2} \cdot \frac{1}{2}$
⇒$\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}$
⇒0
∴LHS=RHS
i.e. cos(A+B)=cosA.cosB-sinAsinB
(iii)
LHS
⇒sin(A-B)=sin(60°-30°)
=sin30°
$=\frac{1}{2}$
RHS
⇒sinA.cosB-cosAsinB
⇒sin60°.cos30°-cos60°.sin30°
⇒$\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}-\frac{1}{2}. \frac{1}{2}$
⇒$\frac{3}{2}-\frac{1}{2}$
⇒$\frac{3-1}{2}=\frac{1}{2}$=RHS
∴sin(A-B)=sinAcosB-cosAsinB
(iv)
A=60° ; B=30°
LHS⇒tan(A-B)=tan(60°-30°)
=tan 30°
$=\frac{1}{\sqrt{3}}$
RHS⇒$\frac{\tan A-\tan B}{1+\tan A \cdot \tan B}$
$\Rightarrow \frac{\operatorname{lan} 60^{\circ}-\tan 30^{\circ}}{1+\tan 60^{\circ} \tan 30^{\circ}}$
$\Rightarrow \frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{1+\sqrt{3} \frac{1}{\sqrt{3}}}$
$\Rightarrow \frac{\frac{\sqrt{3} \cdot \sqrt{3}-1}{\sqrt{3}}}{2}$
$\Rightarrow \frac{\frac{3-1}{\sqrt{3}}}{2}$
$\Rightarrow \frac{\frac{2}{\sqrt{3}}}{2}$
$\Rightarrow \frac{1}{\sqrt{3}}$
∴LHS=RHS
i.e. $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$
Question 11
Sol :
(i) Given : 2sin2θ=√3
$\sin 2 \theta=\frac{\sqrt{3}}{2}$
sin2θ=sin60°
2θ=60°
$\theta=\frac{60}{2}$
θ=30°
(ii)
Given :
$\cos \left(20^{\circ}+x\right)=\sin 60^{\circ}$
$\cos (20+x)=\frac{\sqrt{3}}{2}$
$\cos (20+x)=\cos 30^{\circ}$
$20+x=30^{\circ}$
$x=30-20$
$x=10^{\circ}$
(iii)
Given
$3 \sin ^{2} \theta =2 \frac{1}{4} $
$ 3 \sin ^{2} \theta =\frac{9}{4} $
$ \sin ^{2} \theta =\frac{9}{4\times 3} $
$ \sin ^{2} \theta =\frac{3}{4}$
$ \sin \theta =\sqrt{\frac{3}{4}}$
$ \sin \theta =\frac{\sqrt{3}}{2}$
$\sin \theta =\frac{\sqrt{3}}{2}$
$\sin \theta=\sin 60^{\circ}$
$\theta =60^{\circ}$
Question 12
Sol :
Given :
$\operatorname{sen} \theta=\cos \theta$
$\frac{\sin \theta}{\cos \theta}=1$
$\operatorname{tan} \theta=1$
$\theta=45^{\circ}$
$\Rightarrow 2 \tan ^{2} \theta+\sin ^{2} \theta-1$
$\Rightarrow 2 \cdot \tan ^{2} 45+\sin ^{2} 45-1$
$\Rightarrow 2 \cdot(1)+\left(\frac{1}{\sqrt{2}}\right)^{2}-1$
$\Rightarrow 2+\frac{1}{2}-1$
$\Rightarrow \frac{4+1-2}{2}$
$\Rightarrow \frac{3}{2}$
Question 13
Sol :
(i) From figure
$\operatorname{tan} x^{\circ}=\frac{\sqrt{3}}{1}$
$\operatorname{tan} x^{\circ}=\sqrt{3}$
(ii) x=60
$\sin \theta =\frac{\sqrt{3}}{2}$
$ \sin \theta =\sin 60^{\circ} $
$ \theta=60^{\circ}$
Question 12
Sol :
Given :
$\operatorname{sin} \theta=\cos \theta$
$\frac{\sin \theta}{\cos \theta}=1$
$\tan \theta=1$
$\therefore \quad \theta=45^{\circ}$
$\Rightarrow 2 \tan ^{2} \theta+\sin ^{2} \theta-1$
$\Rightarrow 2 \tan ^{2} 45+\sin ^{2} 45-1$
$\Rightarrow 2 \cdot(1)+\left(\frac{1}{\sqrt{2}}\right)^{2}-1$
$\Rightarrow 2+\frac{1}{2}-1$
$\Rightarrow \frac{4+1-2}{2}$
$\Rightarrow \frac{3}{2}$
Question 13
Sol :
(i) From figure
$\tan x^{\circ}=\frac{\sqrt{3}}{1}$
$\operatorname{tan} x^{\circ}=\sqrt{3}$
(ii) x=60°
Question 15
Sol :
Given : $\tan 3 x=\sin 45^{\circ} \cdot \cos 45^{\circ}+\sin 30^{\circ}$
$\tan 3 x=\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{1}{2}$
$=\frac{1}{2}+\frac{1}{2}$
$=\frac{1+1}{2}$
$=\frac{2}{2}$
tan 3x=1
tan 3x=tan 45°
3x=45°
x=15°
Question 16
Sol :
(i) Given : $4 \cos ^{2} x-1 =0$
$4 \cos ^{2} x =1 $
$ \cos ^{2} x =\frac{1}{4} $
$ \cos ^{3} x =\frac{1}{\sqrt{4}}$
$ \cos x =\frac{1}{2}$
cos x=cos 60°
x=60°
(ii) $\sin ^{2} x+\cos ^{2} x \Rightarrow \sin ^{2} 60^{\circ}+\cos ^{2} 60^{\circ}$
$\Rightarrow\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}$
$\Rightarrow \frac{3}{4}+\frac{1}{4}$
$\Rightarrow \frac{3+1}{4}$
$\Rightarrow \frac{4}{4}$
=1
(iii) $\cos ^{2} x^{\circ}-\sin ^{2} x^{\circ}$
$\Rightarrow \cos ^{2} 60^{\circ}-\sin ^{2} 60^{\circ}$
$\Rightarrow \left(\frac{1}{2}\right)^{2}-\left(\frac{\sqrt{3}}{2}\right)^{2}$
$\Rightarrow \frac{1}{4}-\frac{3}{4}$
$\Rightarrow \frac{1-3}{4}$
$\Rightarrow \frac{-2}{4}$
$\Rightarrow \frac{-1}{2}$
Question 17
Sol :
(i)
Given : secθ=cosecθ
$\frac{1}{\cos \theta}=\frac{1}{\sin \theta}$
$\sin \theta=\cos \theta$
$\frac{\sin \theta}{\cos \theta}=1$
$\tan \theta=1$
$\theta=45^{\circ}$
(ii)
Given $\tan \theta=\cot \theta$
$\frac{\tan \theta}{\cot \theta}=1$ $\left(\because \tan \theta=\frac{1}{\cot \theta}\right)$
$\tan ^{2} \theta=1$
$\therefore \theta=45^{\circ}$
Question 18
Sol :
Given : sin3x=1
sin3x=sin90°
3x=90°
$x=\frac{90^{\circ}}{3}$
$x=30^{\circ}$
(i) sinx⇒$\sin 30=\frac{1}{2}$
(ii) cos2x⇒cos 2×30°
⇒cos 60°
⇒$\frac{1}{2}$
(iii) $\tan ^{2} x-\sec ^{2} x=\tan ^{2} 30^{\circ}-\sec ^{2} 30^{\circ}$
$=\left(\frac{1}{\sqrt{3}}\right)^{2}-\left(\frac{2}{\sqrt{3}}\right)^{2}$
$=\frac{1}{3}-\frac{4}{3}$
$=\frac{1-4}{3}=\frac{-3}{3}$
=-1
Question 19
Sol :
Given : $3 \tan ^{2} \theta-1=0$
$3 \tan ^{2} \theta=1$
$\tan ^{2} \theta=\frac{1}{3}$
$\tan \theta=\frac{1}{\sqrt{3}}$
$\theta=30^{\circ}$
∴cos2θ=cos2×30°
=cos60°
$=\frac{1}{2}$
Question 20
Sol :
Given : sinx+cosy=1
∵x=30°
∴sin30°+cosy=1
$\frac{1}{2}+\cos y=1$
$\cos y=1-\frac{1}{2}$
$\cos y=\frac{1}{2}$
y=60°
Question 21
Sol :
Given : sin(A+B)$=\frac{\sqrt{3}}{2}$=cos(A-B)
⇒sin(A+B)$=\frac{\sqrt{3}}{2}$
⇒sin(A+B)=sin+60°
⇒A+B=60°...(i)
⇒cos(A-B)$=\frac{\sqrt{3}}{2}$
⇒cos(A-B)=cos30°
⇒A-B=30°...(ii)
From (i) and (ii)
$\begin{aligned} A+B &=60^{\circ} \\ A-B &=30^{\circ} \\\hline 2 A &=90^{\circ} \end{aligned}$
A=45°
From (i)
⇒A+B=60°
⇒45°+B=60°
⇒B=60°-45°=15°
∴A=45° ; B=15°
Question 22
Sol :
From figure ΔBOC
$\sin 60 =\frac{B O}{B C}$
$ \frac{\sqrt{3}}{2} =\frac{B O}{8}$
$ BO=\frac{8 \cdot \sqrt{3}}{2}$
BO=4√3
Similarly from ΔOCD
$\sin 60=\frac{O D}{C D}$
$\frac{\sqrt{3}}{2}=\frac{O D}{8}$
OD=4√3
∴BD=DO+OD=4√3+4√3=8√3
and from ΔBOC : cos60$=\frac{O C}{B C}$
$\frac{0 C}{8}=\frac{1}{2}$
OC=4
From ΔAOB ; cos60$=\frac{O A}{A B}$
$\frac{1}{2}=\frac{OA}{8}$
OA=4
∴AC=OA+OC
=4+4=8
Question 23
Sol :
Given : AB=6
∠C=90°
∠B=60°
From Figure
$\sin 60=\frac{A C}{A B}$
$\frac{\sqrt{3}}{2}=\frac{A C}{6}$
$A C=\frac{6 \cdot \sqrt{3}}{2}$
AC=3√3
From Figure
Question 24
QC=QB-CB
∵CB=AP=1.8 m
QC=13.8-1.8=12 m
From figure
$\operatorname{tan} 30^{\circ}=\frac{Q C}{P C}$
$\frac{1}{\sqrt{3}}=\frac{12}{P C}$
Question 25
ΔABC ; ∠B=45°
$AD=4(3-\sqrt{3})$
Comments
Post a Comment