ML Aggarwal Solution Class 9 Chapter 19 Coordinate Geometry Exercise 19.2
Exercise 19.2
Question 1
Draw the graphs of the following linear equations :
(i) 2x + + 3 = 0
(ii) x- 5y- 4 = 0
x | 0 | 1 | -1 |
y | -3 | -5 | -1 |
(ii) $x-5 y-4=0 \Rightarrow x=5 y+4$
x | 4 | -1 | -6 |
y | 0 | -1 | -2 |
Question 2
Draw the graph of 3y= 12 – 2x. Take 2cm = 1 unit on both axes.
x | 0 | 3 | 6 |
y | 4 | 2 | 0 |
Question 3
Draw the graph of 5x + 6y – 30 = 0 and use it to find the area of the triangle formed by the line and the co-ordinate axes.
$\Rightarrow 5 x=30-6 y \Rightarrow \quad x=\frac{30-6 y}{5}$
x | 6 | 1.2 | 0 |
y | 0 | 4 | 5 |
Area of triangle formed by the line and coordinate axes
$=\frac{1}{2} \times \mathrm{OA} \times \mathrm{OB}=\frac{1}{2} \times 6 \times 5=3 \times 5=15$ sq. units
Question 4
Draw the graph of 4x- 3y + 12 = 0 and use it to find the area of the triangle formd by the line and the co-ordinate axes. Take 2 cm = 1 unit on both axes.
$\Rightarrow 4 x=3 y-12 \Rightarrow x=\frac{3 y-12}{4}$
When y=0 ,$x=\frac{3 \times 0-12}{4}=\frac{0-12}{4}=\frac{-12}{4}=-3$
y=2 , $x=\frac{3 \times 2-12}{4}=\frac{6-12}{4}=\frac{-6}{4}=-1.5$
y=4 , $x=\frac{3 \times 4-12}{4}=\frac{12-12}{4}=\frac{0}{4}=0$
Table of value
x | -3 | -1.5 | 0 |
y | 0 | 2 | 4 |
Area of the triangle formed by the line and the coordinates axes
$=\frac{1}{2} \times|\mathrm{OA}| \times|\mathrm{OB}|$
$=\frac{1}{2} \times 3 \times 4=\frac{1}{2} \times 4 \times 3=2 \times 3=6$ sq. units
Question 5
Draw the graph of the equation y = 3x – 4. Find graphically.
(i) the value of y when x = -1
(ii) the value of x when y = 5.
Table of value
x | 0 | 1 | 2 |
y | -4 | -1 | 2 |
(i) The value of y=-7, when x=-1
Question 6
The graph of a linear equation in x and y passes through (4, 0) and (0, 3). Find the value of k if the graph passes through (A, 1.5).
Question 7
Use the table given alongside to draw the graph of a straight line. Find, graphically the values of a and b.
x | 1 | 2 | 3 | a |
y | -2 | b | 4 | -5 |
Hence, a=0 , b=1
Comments
Post a Comment