ML AGGARWAL CLASS 8 Chapter 18 Mensuration Exercise 18.3
Exercise 18.3
Question 1
Sol :
Given volume of cube $=343 \mathrm{~cm}^{3}$
Let 'S' be edge of cube
Volume of cube = $S^{3}$
$\begin{aligned} s^{3} &=343 \\ S &=\sqrt[3]{343} \\ S &=7 \mathrm{~cm} . \end{aligned}$
ஃ Length of an edge of cube = 7cm
Question 2
Sol :
(i) Volume of Cuboid $90 \mathrm{~cm}^{3}$
Length 6cm , Breadth 5cm , Height 3cm
(ii) Volume of cuboid $840 \mathrm{~cm}^{3}$
Length 15cm , Breadth 15cm , Height 7cm
(iii) Volume of Cuboid $62.5 \mathrm{~m}^{3}$
Length 10m , Breadth 5m , Height 1.25m
Question 3
Sol :
Given
Volume of cuboid $=312 \mathrm{~cm}^{3}$
Base $A r e a=26 \mathrm{~cm}^{2}$
volume $=312 \mathrm{~cm}^{\circ}$
Area $\times$ height =312
$26 \times h=312$
$h=\frac{312}{26}$
h = 12cm
Question 4
Sol :
Given
Godown dimension $(1 \times b \times h)=$ $55 \mathrm{~m} \times 45 \mathrm{~m} \times 30 \mathrm{~m}$
Cuboidal box volume =1.2$5 m^{3}$
$\begin{aligned} \text { godown volume } &=\operatorname{l\times b} \times h \\ &=55 \times 45 \times 30 \\ &=74250 \mathrm{~m}^{3} \end{aligned}$
No. of Cuboidal boxes = $\frac{\text { godown Volume }}{\text { box volune }}$
$=\frac{74250}{1.25}$
No. of cuboidal boxes $=59400$
Question 5
Sol :
Given Dimension of rectangular pit = $1.4 \mathrm{~m} \times 90 \mathrm{~cm} \times 70 \mathrm{~cm}$
Volume of pit = $l \times b \times h$
=$140 \times 90 \times 70 \mathrm{~cm}^{3}$
Volume of pit = $882000 \mathrm{~cm}^{3}$
Given
Brick dimension (l $\times$ b) =$2.1 \mathrm{~cm} \times 10.5 \mathrm{~cm}$
Let 'h' height of brick
$1000 \times$ Brick volume = pit volume
$1000 \times$ $21 \times 10.5 \times h=882000$
$h=\frac{882000}{21 \times 10.5 \times 1000}$
h=4cm
$\therefore$ Height of brick =4 cm
Question 6
Sol :
Let 'a' be edge of cube
Volume of cube = $a^{3}$
If each edge of cube is tripled = $a^{1}=3 a$
Volume of new Cube = $a^{1^{3}}$
$=(3 a)^{3}$
$=27 a^{3}$
The Volume becomes 27 times the original Volume of Cube.
Question 7
Sol :
Given
Milk tank is in the from of cylinder
Diameter of tank = 1.4m $\times$ 2
Height of tank = 8m
Volume of tank = $\frac{\pi}{} d^{2} \times h$
$\frac{\pi}{} \times(1-4)^{2} \times 8$
Volume of tank = 49 .26$0 m^{3}$
∴ Volume of tank = 49.260 lit
Question 8
Sol :
Given
Extended dimension of box = $84 \mathrm{~cm} \times 75 \mathrm{~cm} \times 64 \mathrm{~cm}$
Thickness of box = 2 cm
∴ Internal Dimension of box = ($54 -2\times 2$)cm , (75 - 2 $\times$ 2) cm ,(64- 2$\times2$) cm
$=80 \mathrm{~cm} \times 71 \mathrm{~cm} \times 60 \mathrm{cm}$
Volume of wood = External Volume - Internal Volume
= $(84 \times 75 \times 64)-(80 \times 71 \times 60)$
$403200-340800$
Volume of wood $=62400 \mathrm{~cm}^{3}$
Question 9
Sol :
Given
Two Cylinder jar has same volume
Let
$d_{1}, d_{2}$ are diameter jar
$h_{1,} h_{2}$ are heights of jar
Given
$d_{1}: d_{2} \cdot 3: 4$
Volume of cylinder equal
∴ $\frac{\pi}{4} d_{1}^{2} \times h_{1}=\frac{\pi}{4} d_{2}^{2} \times h_{2}$
$d_{1}^{2} \times h_{1}=d_{2}^{2} \times h_{2}$
$\left(\frac{d_{1}}{d_{2}}\right)^{2}=\frac{h_{2}}{h_{1}}$
$\left(\frac{3}{4}\right)^{2}=\frac{h_{2}}{h_{1}}$
$\frac{h_{1}}{h_{2}}=\frac{16}{9}$
$h_{1}: h_{2}=16: 9$
∴ Height of cylinders are in the ratio = 16: 9
Question 10
Sol :
Let 'r' be the ratio's of cylinder
h be the height of cylinder
Volume V = $\pi r^{2} \times h$
Now radius is $=R^{1}=\frac{r}{2}$
Height is doubled = $h^{1}=2 h$
New Volume $V^{1}=\pi r_{1}^{2} \times h^{1}$
$=\pi\left(\frac{r}{2}\right)^{2} \times(2 h)$
$=\frac{\pi r^{2}}{4} \times 2 h$
$v^{1}=\frac{\pi r^{2} \times h}{2}$
$v^{1}=\frac{v}{2}$
ஃ New Volume is half of original Volume
Question 11
Sol :
Dimensions of tin sheet $=30 \mathrm{~cm} \times 18 \mathrm{~cm}$
When rolled along its length (30cm)
-----------------------------------------------
$\begin{aligned} 2 \pi r &=30, \quad h=18 C m \\ r &=\frac{30}{2 \pi} \\ r &=4.77 \mathrm{~cm} \end{aligned}$
$\begin{aligned} \text { Volume } &=\pi r^{2} \times h \\ &=\pi \times 4.77^{2} \times 18 \\ \text { Volume } &=1289.155 \mathrm{~cm} 3 \end{aligned}$
When rolled along breadth (18cm)
----------------------------------------------
$2 \pi r=18, \quad h=30 \mathrm{~lm}$
$r=\frac{18}{2 \pi}$
r= 2.86 cm
$\begin{aligned} \text { Volume } &=\pi r^{2} \times h \\ &=\pi \times 2.86^{2} \times 30 \\ &=773.493 \mathrm{~cm} 3 \end{aligned}$
Question 12
Sol :
(i) Given dis of pipe = 7cm = 0.07m
Velocity = 5m\sec
Discharge = Area $\times$ Velocity
$=\frac{\pi d^{2}}{4} \times V$
$=\frac{\pi \times(0.07)^{2}}{4} \times 5$
Discharge $=0.0192 \mathrm{~m}^{3} / \mathrm{sec}$
$\begin{aligned} \therefore \text { Discharge } &=19.2 \text { lits } / \text { see } \\ &=19.2 \times 60 \text { lits } / \mathrm{min} \end{aligned}$
Discharge = 1154 .53 lits\min
Discharge $\approx 1155 \operatorname{lit} / \min$
(ii) Dimension of tank = $4 m \times 3 m \times 2.31 m$
Discharge $=0.0192$ $m^{3}/sec$
$1.154 \mathrm{~m}^{3} / \mathrm{min}$
Time taken to fill the tank $=\frac{\text { Volume of tank }}{\text { Discharge }}$
$=\frac{4 \times 3 \times 2.31}{1.154}$
Time taken to fill the tank = 24min
Question 13
Given
Vessel 1
radius 15cm
Height 40cm
Volume $\pi x r^{2} \times h$
$\pi \times(15)^{2}+40$
Volume $\quad 28274.33 \mathrm{~cm}^{3}$
Vessel 2
Radius 20cm
Height 40cm
Volume $\pi x r^{2} \times h$
$\pi \times(20)^{2}+45$
Volume $56548.667 \mathrm{~cm}^{3}$
Given
Another vessel with capcity equal to sum of vessel 1 and vessel 2
Let radius of vessel's = R
Height of vessel = 30cm
$\left(\pi R^{2}\right) \times 30=28274.33+56548.667$
$\begin{aligned} 30 \times\left(11 R^{2}\right) &=84823 \\ R^{2} &=\frac{84823}{\pi \times 30} \end{aligned}$
$R^{2}=900$
$R=\sqrt{900}$
$R=30 \mathrm{Cm}$
∴ Radius of vessel = 30cm
Question 14
Sol :
Given
Pole height = 7m
Pole diameter = 20cm = 0.2m
Density = $225 \mathrm{~kg} / \mathrm{m}^{3}$
Volume of wood = $\frac{\pi d^{2}}{4} \times h$
$=\frac{\pi}{4} \frac{(20)^{2}}{10^{4}} \times 7$
Volume of wood $=0.219 \mathrm{~m}^{3}$
Weight of wood = 49.48kg
Question 15
Sol :
A cylinder with diameter of 14cm and height of 30cm is the maximum Volume
That can be cut from given Cuboid
Volume of cylinder = $\frac{\pi}{4} d^{2} \times h$
$=\frac{\pi}{4}(14)^{2} \times 30$
Volume of cylinder = 4618.14 $\mathrm{cm}^{3}$
Volume of wood wasted = Volume of cuboid - Volume of cylinder
= $14 \times 14 \times 30-(4618.14)$
Volume of Wood wasted = $1261.85 \mathrm{~cm}^{3}$
Comments
Post a Comment