ML Aggarwal Class 8 Chapter 1 Rational Numbers Exercise 1.2
Exercise 1.2
Question 1
Question 3
Question 4
x⇒$\frac{-11}{10}$
Question 5
Sol :
$\left[\frac{-5}{7}+\left(\frac{-8}{3}\right)\right]-\left[\frac{5}{2}+\left(\frac{-11}{12}\right)\right]$
$\left[\frac{(-5 \times 3)+(-8 \times 7)}{21}\right]-\left[\frac{5 \times 6+(-11 \times 1)}{12}\right]$
$\frac{-284-133}{84}-\frac{417}{84}=\frac{-139}{28}=-\frac{139}{28} \|$
Question 6
Sol :
$\quad x=\frac{4}{9} ; \quad y=\frac{-7}{12}$
Consider
x-y = $\frac{4}{9}-\left(-\frac{7}{12}\right)$
$=\frac{4}{9}+\frac{7}{12}$
⇒$\frac{(4 \times 4)+(7 \times 3)}{36}$ (∴LCM OF 9,12= 36)
⇒$\frac{16+21}{36}$
⇒$x-y=\frac{37}{36}$
Consider
y-x = $\frac{-7}{12}-\left(\frac{4}{9}\right)$
⇒$\frac{-7}{12}-\frac{4}{9}$
⇒$\frac{(-7 \times 3)-(4 \times 4)}{36}$ LCM of 9, 12=36
⇒$\frac{-21-16}{36}$
y-x ⇒$\frac{-37}{36}$
ஃx-y ≠ y-x
Question 7
Sol :
$x=\frac{4}{9} ; \quad y=\frac{-7}{12} ; \quad z=\frac{-2}{3}$
Consider
$x-(y-z)=\frac{4}{9}-\left(\frac{-7}{12}-\left(\frac{-2}{3}\right)\right)$
$=\frac{4}{9}-\left(\frac{-7}{12}+\frac{2}{3}\right)$
⇒$\frac{4}{9}-\left(\frac{(-7 \times 1)+(2 \times 4)}{12}\right)$
⇒$\frac{4}{9}-\left(\frac{-7+8}{12}\right)$
⇒$\frac{4}{9}-\frac{1}{12}$
⇒$\frac{(4 \times 4)-(1 \times 3)}{36}$
=$\frac{16-3}{36}$
$x-(y-z)$ =$\frac{13}{36}$
Consider ( x-y)-z =$\left[\frac{4}{9}-\left(\frac{-7}{12}\right)\right]-\left(\frac{-2}{3}\right)$
$=\left[\frac{4}{9}+\frac{7}{12}\right]+\frac{2}{3}$
$=\left[\frac{(4 \times 4)+(-7 \times 3)}{36}\right]+\frac{2}{3}$
$=\frac{16+21}{36}+\frac{2}{3}$
$=\frac{37}{36}+\frac{2}{3}$
$=\frac{(37 \times 1)+(2 \times 12)}{36}$
⇒$\frac{37+24}{36}$
$(x-y)-z=\frac{61}{36}$
∴ $x-(y-z) \neq(x-y)-z$Question 8
Sol :
(i) ⇒$\frac{2}{3}-\frac{4}{5}$
$\frac{(2 \times 5)-(4 \times 3)}{15}$ LCM = 3,5 = 15
⇒$\frac{10-12}{15}$
⇒$\frac{-2}{5}$ It is a Rational Number
So. given statement is False
(ii)true
$\frac{-5}{7}+\frac{5}{7}=0$
Comments
Post a Comment