ML Aggarwal Class 8 Chapter 1 Rational Numbers Exercise 1.2
Exercise 1.2
Question 1
Question 3
Question 4
x⇒−1110
Question 5
Sol :
[−57+(−83)]−[52+(−1112)]
[(−5×3)+(−8×7)21]−[5×6+(−11×1)12]
−284−13384−41784=−13928=−13928‖
Question 6
Sol :
x=49;y=−712
Consider
x-y = 49−(−712)
=49+712
⇒(4×4)+(7×3)36 (∴LCM OF 9,12= 36)
⇒16+2136
⇒x−y=3736
Consider
y-x = −712−(49)
⇒−712−49
⇒(−7×3)−(4×4)36 LCM of 9, 12=36
⇒−21−1636
y-x ⇒−3736
ஃx-y ≠ y-x
Question 7
Sol :
x=49;y=−712;z=−23
Consider
x−(y−z)=49−(−712−(−23))
=49−(−712+23)
⇒49−((−7×1)+(2×4)12)
⇒49−(−7+812)
⇒49−112
⇒(4×4)−(1×3)36
=16−336
x−(y−z) =1336
Consider ( x-y)-z =[49−(−712)]−(−23)
=[49+712]+23
=[(4×4)+(−7×3)36]+23
=16+2136+23
=3736+23
=(37×1)+(2×12)36
⇒37+2436
(x−y)−z=6136
∴ x−(y−z)≠(x−y)−zQuestion 8
Sol :
(i) ⇒23−45
(2×5)−(4×3)15 LCM = 3,5 = 15
⇒10−1215
⇒−25 It is a Rational Number
So. given statement is False
(ii)true
−57+57=0
Comments
Post a Comment