ML AGGARWAL CLASS 8 CHAPTER 10 Algebraic Expressions and Identities Exercise 10.1
Exercise 10.1
Question 1
Sol :
(i) Given expression $12 x^{2} y z-4 x y^{2}$
Terms
$12 x^{N} y z$
$-4 x y^{2}$
Numerical coefficient
12 , -4
Literal Coefficient
$x^{2} y z$
$x y^{2}$
(ii) Given expression $8+m n+n l-1 m$
Terms
8mn , nl ,-lm
Numerical cofficient
8 ,1 , 1 ,-1
Literal Coefficient
- ,mn ,nl ,lm
(iii) Given expression $\frac{x^{2}}{3}+\frac{4}{6}-x y^{2}$
Terms
$\frac{x^{2}}{3}$
$\frac{y}{6}$
$-x y^{2}$
Numerical co-efficient
$\frac{1}{3}$
$\frac{1}{6}$
-1
Literal co - efificient
$x^{2}$
$y$
$x y^{2}$
(iv) Given expression $-4 p+2.3 q+1.7 r$
Terms
$-4 \mathrm{P}$ ,2.3q ,$1.7 \mathrm{r}$
Numerical co-efficient
-4 ,2.3 ,1.7
Literal co-efficient
P ,q ,r
Question 2
Sol :
(i) $5 \mathrm{p} \times \mathrm{q} \times \mathrm{r}^{2} \rightarrow$ Monomial
(ii) $3 x^{2} \times y \div 2 z \rightarrow$ Monomial
(iii) $-3+7 x^{2} \rightarrow$ Binomial
(iv) $\frac{5 a^{2}+3 b^{2}+c}{2} \rightarrow$ Trinomial
(v) $7 x^{5}-\frac{3 x}{y} \rightarrow$ Binomiol
(vi) $5 p \div 3 q-3 p_{x}^{2} \ q_{} \rightarrow$ Binomial
Question 3
(i) $\frac{2}{5} x^{4}-\sqrt{3} x^{2}+5 x-1$
Itis polynomial of degree 4
(ii) $7 x^{3}-\frac{3}{x^{2}}+\sqrt{5}$
due to $-3 x^{-2}$ term, It is not called as polynomial
$\therefore$ It is Not Polynomial
(iii) $4 a^{3} b^{2}-3 a b^{4}+5 a b+\frac{2}{3}$
It is a polynomial of degree 5
(iv) $2 x^{2} y-\frac{3}{x y}+5 y^{3}+\sqrt{3}$
due to negative power in the $-3(x y)^{-1}$
$\therefore$ It is not a Polynomial
Question 4
Sol :
(i) Arrange terms for column method
$\begin{array}{r}a b-b c \\0+b c-c a \\-a b \quad 0+c a \\\hline 0+0+0\end{array}$
$\therefore a b-b c+b c-c a+c a-a b=0$
(ii) Arrange terms in columns
$5 p^{2} q^{v}+4 p q+7$
$-2 p^{2} q^{2}+9 p q+3$
---------------------------------
$3 p^{v} q^{2}+13 p q+10$
(iii) Arrange terms in columns
$l^{2}+m^{2}+n^{2}+0+0+0$
$0+0+0+\operatorname{lm}+m n+0$
0+0+0+0+m n+nl
0+0+0+1 m+0+n l
---------------------------------------------------
$l^{2}+m^{2}+n^{2}+2l m+2 m n+2 n l$
(iv) Arrange terms in columns
$4 x^{3}-4 x^{2}+0 x+9$
$^{}+3 x^{2}+5 x+4$
$7 x^{3}+0-11 x+1$
$0+6 x^{2}-13 x+0$
-------------------------------------
$10 x^{3}+2 x^{2}-29 x+14$
Question 5
Sol :
(i) $\begin{array}{r}14 a-5 a b+7 b-5\\{8 a+3 a b-2 b+7}\\(-)\quad(-)\quad(+)\quad(-) \\ \hline 6 a-8 a b+9b-12 \\ \hline \end{array}$
(ii) $12 x y-3 y z-4 z x+5 x y z$
$8 x y+4 y z+5 z x+0$
$(-) \quad(-) \quad(-)\quad(-)$
--------------------------------------
$4 x y-7 y z-9 z x+5 x y z$
(iii) $5 p_{q}^{2}-2 p q^{2}+5 p q-11 q-3 p+18$
$4 p^{2} q+3 p q^{2}-3 p q+7 q-8 p-10$
$(-) \quad(-)\quad(+) \quad(-) \quad(+)\quad(+)$
-----------------------------------------------------------
$p^{\gamma} q-7 p q^{2}+8 p q-18 q+5 p+28$
Question 6
Sol :
Horizontal method
$3 x^{2}+5 x y+7 y^{2}+3 \rightarrow 1$
$2 x^{2}-4 x y-3 y^{2}+7 \rightarrow(2)$
$9 x^{2}-8 x y+11 y^{2} \rightarrow(3)$
(3) $-[(1)+(2)]$
$9 x^{2}-8 x y+11 y^{2}-\left[3 x^{2}+5 x y+4 y^{2}+3+2 x^{2}-4 x y-3 y^{2}+7\right]$
$9 x^{2}-8 x y+11 y^{2}-\left[5 x^{2}+x y+4 y^{2}+10\right]$
$9 x^{2}-8 x y+11 y^{2}-5 x^{2}-x y-4 y^{2}-10$
$4 x^{2}-9 x y+7 y^{2}-10$
Question 7
Sol :
Let $3 a^{2}-5 a b-2 b^{2}-3---(1)$
$5 a^{2}-7 a b-3 b^{2}+3 a---(2)$
do (2) - (1)
$5 a^{v}-7 a b-3 b^{2}+3 a$
$3 a^{v}-5 a b-2 b^{2}+0-3$
$(-) \quad(+)\quad(+) \quad(-) \quad(+)$
---------------------------------------------------
$2 a^{2}-2 a b-b^{2}+3 a+3$
Question 8
Sol :
Perimeter of triangle (p) = $7 p^{2}-5 p+11 \rightarrow(1)$
sides
$s_{1}=p^{2}+2 p-1 \rightarrow(2)$
$s_{2}=3 p^{2}-6 p+3 \rightarrow(3)$
$S_{3}=?$
$\begin{aligned} P &=S_{1}+S_{2}+S_{3} \\ S_{3} &=P-\left(S_{1}+S_{2}\right) \end{aligned}$
$-7 p^{2}-5 p+11-\left[p^{2}+2 p-1+3 p^{2}-6 p+3\right]$
$=7 p^{2}-5 p+11-\left[4 p^{2}-4 p+2\right]$
$=7 p^{2}-5 p+11-4 p^{2}+4 p-2$
$S_{3}=3 p^{2}-p+9$
hence third side of triangle
Comments
Post a Comment