ML AGGARWAL CLASS 8 CHAPTER 11 Factorisation Exercise 11.5
Exercise 11.5
Solution 1
Sol :
(i) $(35 x+28) \div(5 x+4)$
$\frac{35 x+28}{5 x+4}$
$⇒\frac{7(5 x+4)}{5 x+4}$
$⇒\quad 7$
(ii) $7 p^{2} q^{2}(9 r-21) \div 63 p q(r-3)$
⇒ $\frac{7 p^{2} q^{2}(9 r-27)}{63 p q(r-3)}$
⇒ $\frac{7 \cdot p^{2} q^{ 2} \cdot q(r- 3)}{63 pq(x - 3)}$
⇒ pq
Solution 2
Sol :
(i) $6(2 x+7)(5 x-3) \div 3(5 x-3)$
⇒$\frac{6(2 x+7)(5 x-3)}{ 3(5 x-3)}$
⇒2(2 x+7)
⇒$\quad 4 x+14$
(ii) $33 p q(p+3)(2 q-5) \div 11 p(2 q-5)$
⇒$\frac{38 p q(p+3)(2 q-8)}{11-pq (2 q-5)}$
⇒3(p+3)
⇒3p+9
Solution 3
Sol :
(i) $\left(7 x^{3}-63 x\right) \div 7(x-3)$
⇒ $\frac{7 x^{3}-6 x}{7(x-3)}$
⇒$\frac{7 x\left(x^{2}-9\right)}{7(x-3)}$
⇒$\frac{x\left(x^{2}-3^{2}\right)}{x-3}$
⇒$\frac{x(x+3)(x-3)}{(x-3)}$
⇒x(x+3)
⇒$x^{2}+3x$
(ii) $\left(3 p^{2}+17 p+10\right) \div(p+5)$
⇒$\frac{3 p^{2}+17 p+10}{p+5}$
⇒$\frac{3 p^{2}+15 p+2 p+10}{p+5}$
⇒$\frac{3 P(p+5)+2(p+5)}{p+5}$
⇒$\frac{(p+5)(3 p+2)}{(p+5)}$
⇒ 3p+2
(iii) $10 x y\left(14 y^{2}+43 y-21\right) \div 5 x(7 y-3)$
⇒ $\frac{10 y\left(14 y^{2}+43 y-21\right)}{5x(7 y-3)}$
⇒$\frac{2 y\left(14 y^{2}-6 y+49 y-21\right)}{7 y-3}$
⇒$\frac{2 y(2 y(7 y-3)+7(7 y-3))}{7 y-3}$
⇒$\frac{2 y(7 y-3)(2 y+7)}{(7 y-3)}$
⇒2y(2 y+7)
(iv) $12 p q r\left(6 p^{2}-13 p q+6 q^{2}\right) \div 6 p q(2 p-3 q)$
⇒ $\frac{12pq r\left(6 p^{2}-13 p q+6 q^{2}\right)}{6 pq(2 p-3 q)}$
⇒ $\frac{2r\left(6 p^{2}-9 p q-4 p q+6 q^{2}\right)}{2 p-3 q}$
⇒ $\frac{2 r(3 p(2 p-3 q)-2 q(2 p-3 q))}{2 p-3 q}$
⇒ $\frac{2 r(2 p-3 q)(3 p-2 q)}{(2 p-3 q)}$
⇒2(3 p-2 q)
Comments
Post a Comment