ML AGGARWAL CLASS 8 Chapter 13 Understanding Quadrilaterals Excercise 13.1
Exercise 13.1
Question 1
Sol :
(a) simple curves:- (i), (ii), (iii), (v), (vi)
(a) simple curves:- (i), (ii), (iii), (v), (vi)
(b) Simple closed curves:- (iii), (v), (vi)
(c) polygon:- (iii), (vi)
(d) Convex polygon: - (iii),
(e) Concave polygon:- (v)
Question 2
Sol :
(a) A convex quadrilateral has two diagonal
(b) A regular hexagon has 9 diagonals
Question 3
Sol :
(i) 8
Sum of all interior angles $=(2 n-4) \times 90$
given no of sides of polygon(n) =8
Sum of all interior angles $=(2 \times 8-4) \times 90$
$=(16-4) \times 90$
$=12 \times 90$
=1080
(ii) Given
No . of sides of polygon (n) = 12
Sum of all interior angles = $(2 n-4) \times 90$
$=(2 \times 12-4) \times 90$
=1800
Question 4
Sol :
(i) Given
exterior angle of polygon $=24^{\circ}$
Sum of all exterior angles polygon = 360
$\begin{aligned} \therefore \quad n \times 24 &=360 \\ n &=15 \end{aligned}$
(ii) Given
exterior angle of polygon $=60^{\circ}$
Sum of all exterior angles of polygon $=360^{\circ}$
$\therefore n \times 60=360$
∴ No. of sides of given polygon is 6
(iii) Given
exterior angle of polygon $=72^{\circ}$
Sum of all exterior angles of polygon $=360^{\circ}$
$\therefore n \times 72^{\circ}=360$
n= 5
∴ No. of sides of given polygon is 5
Question 5
Sol :
(i) For polygon with 'n ' sides
The each interior angle of polygon is given by
=$\frac{(2 n-4) \times 90}{n}$
given
interior angle of polygon = 90
$\frac{(2 n-4) \times 90}{n}=90$
$(2 n-4)=n
2 n-n=4
n=4
∴ no. of sides of polygon = 4
(ii) For a polygon a with 'n' sides
The each interior angles of polygon is given by
$=\frac{(2 n-4) \times 90}{n}$
given interior angle = $108^{\circ}$
$\frac{(2 n-4) \times 90}{n}=108^{\circ}$
$2 n-4=\frac{6}{5} \cdot n=5(2 n-4)=6 n$
10 n-20=6 n
10 n-6 n=20
4 n=20
$n=\frac{20}{4}$
n=5
∴ no. of sides of polygon = 5
(iii) For a polygon with 'n' sides .
The each interior angle of polygon is given by
$\frac{(2 n-4) \times 90}{n}$
given interior angle $=165^{\circ}$
$\therefore \quad \frac{(2 n-4) \times 90}{n}=165$
$\frac{(2 n-4)}{n}=\frac{11}{6}$
$6(2 n-4)=11 . \times n$
12 n-24=11 n
12 n-11 n=24
n=24
∴ no. of sides of polygon= 24
Question 6
Sol :
Given sum of interior angles of a polygon = 1260
∴ $(2 n-4) \times 90=1260^{\circ}$
Where n - no. of sides of polygon
$\begin{aligned}(2 n-4) &=\frac{1260}{90} \\ 2 n-4 &=14 \\ 2 n &=14+4 \\ 2 n &=18 \\ n &=18 / 2 \\ n &=9 \end{aligned}$
∴ Given polygon has nine sides
Question 7
Sol :
Given
Ratio of angles of pentagon =7: 8: 11: 13: 15
Let Angles of pentagon =7 x, 8 x ,11 x, 13 x, 15x
Sum of angle of polygon = $(2 n-4) \times 90$
$\begin{aligned} 7 x+8 x+11 x+13 x+15 &=(2 \times 5-4) \times 90 \\ 54 x &=6 \times 90 \\ x &=\frac{540}{54} \\ {x} &=10^{\circ} \end{aligned}$
Question 8
Sol :
Given angles of pentagon =$x^{\circ},(x-10)^{\circ},(x+20)^{\circ},(2 x-44)^{\circ}$
$\operatorname{and}(2 x-70)^{\circ}$
Sum of interior angles of polygon = $(2 n-4) \times 90$
$x+(x+10)+(x+20)+(2 x-44)+(2 x-70)=(2 \times 5-4) \times 90$
$7 x-104=6 \times 90$
7 x=540+104
$\begin{aligned} 7 x &=644 \\ x &=\frac{644}{7} \\ x &=92 \end{aligned}$
∴ Angle of pentagon = $92^{\circ},(92-10)^{\circ},(92+20)^{\circ}$
$(2 \times 92-44),(2 \times 92-70)$
=92,82,112,140,114
Question 9
Sol :
Given
Exterior angles Ratio =1: 2: 3: 4: 5
Let exterior angles = x, 2 x, 3 x, 4 x, 5 x
Sum of the exterior angles = 360
$\begin{aligned} x+2 x+3 x+4 x+5 x &=360 \\ 15 x &=360 \\ x &=\frac{360}{15} \\ x &=24 \end{aligned}$
Exterior angles of pentagon
$24,48,72^{\circ}, 96^{\circ}, 120^{\circ}$
Internal angle = 180 - External angle
Internal angles of pentagon = $180-24,180-48,150-72,180-96,180-120$
Interior angles $=156^{\circ}, 132^{\circ}, 108^{\circ}, 84^{\circ}, 60^{\circ}$ of pentgon
Question 10
Sol :
Given
$\angle A: \angle D=2: 3$
$L B: \angle C=7: 8$
Let $\quad \angle A=2 x, \quad \angle$ L D=3 x
Let $\quad\angle B=7 y, \quad\angle C=8 y$
$\quad\angle$ B+$\quad\angle$C=180$(\because A B \| D C)$
$7 y+8 y=180^{\circ}$
15 y=180
y=12
$\therefore \quad \begin{aligned} \angle B &=7 y=7 \times 12=84^{\circ} \\ \therefore \quad\angle B &=8 y=8 \times 12=96^{\circ} \end{aligned}$
$\quad\angle A+\angle D=180^{\circ}$
2 x+3 x=180
$\begin{aligned} 5 x &=180 \\ x &=36 \end{aligned}$
$\angle A=2 x=2 \times 36=72^{\circ}$
$\angle D=3 x=3 \times 36=108$
$\therefore\angle A=72^{\circ}, \angle B=84^{\circ}, L C=96^{\circ}, \angle D=108^{\circ}$
Question 11
Sol :
From $\triangle D B C$
$\begin{aligned}\angle D B C+\angle C+\angle C D B &=180^{\circ} \\ x+5 x+8+\angle C D B &=180^{\circ} \\ 6 x+8+\angle C P B &=180 \\ \angle C D B &=180-6 x-8 \\ \angle C D B &=172-6 x \end{aligned}$
$\begin{aligned} \angle C D B+& \angle A D B=3 x+10^{\prime} \\ 172-6 x+&\angle A D B=3 x+16\\ & \angle A D B=3 x+10+6 x-172 \\ &=9 x-162 \end{aligned}$
In $\triangle A D B$
$\angle A D B+\angle D A B+\angle A B D=180^{\circ}$
9 x-162+3 x+4+50=180
12 x-108=180
12 x=180+108=288
$x=\frac{288}{12}$
$x=24^{\circ}$
(ii) $\begin{aligned} \angle D A B &=3 x+4 \\ &=3 \times 24+4 \\ &=72+4 \\ \angle D A B &=76^{\circ} \end{aligned}$
(iii) $\begin{aligned} \angle A D B &=9 x-162 \\ &=9 \times 24-162 \\ \angle A D B &=216-162 \\ \angle A D B &=54^{\circ} \end{aligned}$
Question 12
Sol :
(i) Sum of angles in quadrilateral = 360
∴ $\begin{aligned} 40+140+100+x &=360 \\ 280+x &=360 \\ x &=360-280 \\ x &=80 \end{aligned}$
(ii) Interior angle = 180-- (exterior angle)
Sum interior angles
pentagon $=(2 \times 5-4) \times 90$
$\begin{aligned} 40+x+x+120+100 &=6 \times 90 \\ 2 x+260 &=540 \\ 2 x &=540-260 \\ 2 x &=280 \end{aligned}$
$x=\frac{280}{2}$
x=140
(iii) Sum of interior angles of a quadrilateral = 360'
$\begin{aligned} \therefore x+110+60+90 &=360 \\ x+260 &=360 \\ x &=360-260 \\ x &=100 \end{aligned}$
(iv) Sum of interior angles of a quadrilateral = 360
$\begin{aligned} 110^{\circ}+83^{\prime}+180-x+90 &=360 \\ 463-x &=360 \\ x &=463-360 \\ x &=103 \end{aligned}$
Question 13
Sol :
(i) Sum of angles in a triangle = 180'
$\begin{aligned} 90+70+180-& z=180 \\ z &=90+70 \\ z &=160 \end{aligned}$
$\begin{aligned} 90+x &=180(\because \text { Forms straight line }) \\ x &=180-90 \\ x &=90 \end{aligned}$
$\begin{aligned} 70+y &=180 \text { (-: Forms straight line) } \\ y &=180-70 \\y &=110 \end{aligned}$
$\begin{aligned} \therefore \quad & x+y+z=90+110+160 \\ \therefore \quad & x+y+z=360^{\circ} \end{aligned}$
(ii) Sum of interior angles of a quadrilateral = 360'
$\begin{aligned} 70+80+130+a &=360^{\circ} \\ 280+a &=360 \\ a &=360-280 \\ a &=80 \end{aligned}$
a+w=180 (∵Forms straight line)
$80+\omega=180$
$\omega=180-80$
$\omega=100$
z+70=180 ($\because$ Forms straight line )
z=180-70
z=110
$\begin{aligned} 80+y &=180(\because \text { forms straight line }) \\ y &=180-80 \\ y &=100 \end{aligned}$
$\begin{aligned} 130+x &=180 \quad(\therefore \text { Forms straight line) }\\ x &=180-130 \\ x &=50 \end{aligned}$
$\therefore x+y+z+\omega=50+100+110+100=360^{\circ}$
Question 14
Sol :
Given
The pentagon has three equal angles = $120^{\circ} 120^{\circ}, 120^{\circ}$
Let remaining four equal angles = x, x,x, x
Sum of interior angles of heptagon = $(2 \times 7-4) \times 90$
=$10 \times 90$
=900
$\therefore \quad 120+120+120+x+x+x+x$
$\begin{aligned} 360+4 x &=900 \\ 4 x &=900-360 \\ 4 x &=540 \\ x &=\frac{540}{4} \\ x &=135^{\circ} \end{aligned}$
The other equal angle of heptagon = 135
Question 15
Sol :
Ratio between exterior and interior angles
=1: 5
(i) Let exterior angle =x
Interior angle =5 x
exterior angle + Interior angle =180
$\begin{aligned} x+5 x &=180 \\ 6 x &=180 \\ x &=\frac{180}{6} \\ x &=30 \end{aligned}$
Each exterior angle =x =30
(ii) Each interior angle = 5x = $5 \times 30=150^{\circ}$
(iii) $\begin{aligned} \text { no.of sides of polygon } &=\frac{360}{\text { Exlerior angle }} \\ &=\frac{360}{30}=12 \end{aligned}$
∴ No. of sides of polygon = 12
Question 16
Sol :
Given
{ Each interior angle of polygon }=2 \times \text { Exterior angle }
Interior angle+Exterior angle =180
$2 \times$ Exterior angle + Exterior angle =180
$3 \times$ Exterior angle $=180$
Exterior angle $=\frac{180}{3}$
Exterior angle $=60^{\circ}$
$\begin{aligned} \text { no.of sides of polygon } &=\frac{360}{\text { Exterior angle }} \\ &=\frac{360}{60} \end{aligned}$
No. of sides of polygon= 6
Comments
Post a Comment