ML AGGARWAL CLASS 8 Chapter 13 Understanding Quadrilaterals Exercise 13.2
Exercise 13.2
Question 1
Sol :
(i) 6cm (∵opposite sides are equal )
(ii) 9cm (∵opposite sides are equal )
(iii) $\angle D C B=60^{\circ} \quad(\because \angle DCB) \angle C B A$ are Supplementary)
(iv) $\angle A D C=120^{\circ} \quad(\because$ opposite angles are equal)
(v) $\angle D A B=60^{\prime} \quad \because$ Adjacent angles are Supplementary $)$
(vi) OC = 7cm (∵ 'O' bisecs Ac )
(vii) OB = 5cm (∵ 'O' bisecs Db)
Question 2
Sol :
(i) Given parallelogram
Let the unknown angle = a
∴ a + 120 = 180 (∵Adjacent angles are supplementary)
a= 180 - 120
a= 60
∴ a + y = 180 (∵Adjacent angles are supplementary)
$\begin{aligned} 60+y &=180^{\circ} \\ y &=180-60 \\ y &=120^{\circ} \end{aligned}$
x = 60 (∵ opposite angles are equal in parallelogram)
z = 120
(ii) ABCD is a parallelogram
$z=40^{\circ}(\because A B \| C D)$
At 'O'
$100+\angle C O D=180^{\circ}$ (∵ Forms straight line)
$\angle CO D=180-100^{\circ}$
$\angle C O D=80^{\circ}$
In $\triangle C O D$
$\begin{aligned} Z+\angle C O D+y &=180^{\circ} \\ 40+80+y=& 180 \\ y+120 &=180^{\circ} \\ y &=180-120 \end{aligned}$
y = 60
In $\triangle B O C$
$\begin{aligned} L A C B=30^{\circ} \quad(\because B C \| A D) & \\ \therefore \quad & x+\angle A C B+\angle B O C=180^{\circ} \\ & x+30+100=180 \\ x+130 &=180 \\ x &=180-130 \\ & x=50^{'} \end{aligned}$
$x=50^{\circ}, y=60^{\circ}, z=40^{\circ}$
(iii) ABCD is a parallelogram
Y= $120^{\circ}$ (∵Opposite angles are equal in parallelogram)
$Z+35^{\circ}+120=180$ (∵Adjacent angles are supplementary)
$\begin{aligned} z+155 &=180 \\ z &=180-155 \\ z &=25^{\circ} \end{aligned}$
$z=x(\because \quad A B \| C D)$
$x=25^{\circ}$
$\therefore \quad x=25^{\circ}, \quad y=120 ; \quad z=25^{\circ}$
(iv) ABCD is a parallelogram
$\therefore \quad \angle A+\angle D=180^{\circ}$
(∵Adjacent angles are supplementary)
$\begin{aligned} 67+x+y 0 &=180 \\ x+137 &=180 \\ x &=180-137 \\ x &=43^{\circ} \end{aligned}$
z = 70 (∵ opposite angles are equal in parallelogram )
$\angle B C A=\angle C A D \quad(\because A D \| B C)$
$\angle B C A=x$
$L B C A=43^{\circ}$
At 'C'
$\begin{aligned} \angle B C A+y &=180^{\circ}(\because \text { Forms a straight line }) \\ 43+y &=180 \\ y &=180-43 \\ y & \quad y=137^{\circ} \end{aligned}$
$\therefore \quad x=43^{\circ}, \quad y=137^{\circ}, z=70^{\circ}$
Question 3
Sol :
Let x , y are length of adjacent sides of parallelogram
Given
Perimeter $=72 \mathrm{~cm}$
$x: y=5: 7 \Rightarrow \frac{x}{y}=\frac{5}{7} \Rightarrow x=\frac{5}{7} \cdot y$
x+y+x+y=72 (∵opposite sides are equal in length)
2(x+y)=72
$2\left(\frac{5}{7} \cdot y+y\right)=72$
$\frac{12}{7} \cdot y=36$
$y=\frac{36 \times 7}{12}$
$y=21 \mathrm{~cm}$
$\begin{aligned} x &=\frac{5}{7} \cdot y \\ x &=\frac{5}{7} \times 21 \\ x &=15 \mathrm{~cm} \\ \therefore \quad x=15 \mathrm{~cm}, & y=21 \mathrm{~cm} . \end{aligned}$
ஃ $15 \mathrm{~cm}, 21 \mathrm{~cm}$ are lengths sides of parallelogram
Question 4
Sol :
Given
Angles of parallelogram are in the ratio of 4: 5
Let the Angle be 4 x, 5 x
$\begin{array}{rl}4 x+5 x & =180(\because \text { Adjacent angles are Supplementary }] \\ 9 x= & 180 \\ x & =20\end{array}$
Angles $4 x=4 \times 20=80^{\circ}$
$5 x=5 \times 20=100^{\circ}$
∴ Four angles of parallelogram = $80^{\circ}, 100^{\circ}, 80^{\circ}, 100^{\circ}$
(∵Opposite are equal in a parallelogram)
Question 5
Sol :
(i) $\angle A+\angle C=180^{\circ} ?$
may (Or) may not be
∵( $\angle A = \angle C = 90'$ )
(ii) $\begin{aligned} A D &=B C=6cm, A B=5cm, D C=4.5 \mathrm{Cm} \\ & No(\because A D \neq B C) \end{aligned}$
(iii) $\angle B=80^{\circ}, \angle D=70^{\circ}$ ?
No, opposite angles must be equal in parallelogram
(iv) $\angle B+\angle C=180^{\circ} ?$
Yes (∵Adjacent angles are supplementary )
Question 6
Sol :
$y=40^{\circ}$
$(\because \quad H E \| O P)$
At 'o '
$\angle H O P+70^{\circ}=180^{\circ} \quad(\because$ forms straight line $)$
$\angle H O P=180^{\circ}-70^{\circ}$
$\angle H O P=110^{\circ}$
∴ $\angle HOP = 110' (∵Opposite angles are equal )
$\begin{aligned} 40+z+110^{\circ} &=180^{\prime}(\because \text { ∵Adjacent angles are supplementary }) \\ z+150 &=180 \\ z &=180-150 . \\ z &=30^{\circ} \end{aligned}$
At ' O'
$x+60+80=180^{\circ}$ (Forms straight line)
$\begin{aligned} x+140 &=180^{\circ} \\ x &=180-140 \\ x &=40^{\circ} \end{aligned}$
$z=x=40^{\circ}(∵\quad R 0 \| E P)$
$\angle O+\angle P=180^{\circ}$ (∵Adjacent angles are supplementary)
$\begin{aligned} x+60+y=& 180^{\circ} \\ 40+60+y=& 180 \\ y+100=& 180 \\ y &=150-100 \\y=80^{\circ} \end{aligned}$
Question 7
Sol :
Opposite sides are equal
$\begin{array}{ll}5 y-1=24 & 4 x+2=28 \\ 5 y=24+1 & 4 x=28-2 \\ 5 y=25 & 4 x=26 \\ y=5] & x=\frac{26}{4}=\frac{13}{2}\end{array}$
$\therefore \quad x=6.5, y=5$
'O' Bisects the $\overline{B R}$
$\begin{aligned} \overline{B O} &=\overline{O R} \\ x+y &=20 \rightarrow(1) \end{aligned}$
'o' Bisects the $\overline{N v}$
$\overline{N O}=\overline{O V}$
x+3=18----------②
x=18-3
x=15
Substituted x value in ①
$\begin{aligned} 15+y &=20 \\ y &=20-15 \\ y &=5 \end{aligned}$
Question 8
Sol :
In A B C D Parallelogram
$\angle A+\angle B=180$ (∵Adjacent angles are supplementary)
$120+\angle B=180$
$\angle B=180-120$
$\angle B=60^{\circ}$
In PQRS parallelogram
$\angle P \doteq \angle R(\because$ opposite angles are equal)
$\angle P=50^{\circ}$
In $\triangle P B X$
$\begin{aligned} \angle P+\angle B+x &=180^{\prime} \text { (- Sum of angles in triangle) } \\ 50+60+x &=180 \\ 110+x &=180 \\ \quad x &=180-110 \\ \quad x &=70^{\circ} \end{aligned}$
Question 9
Sol :
(i) $\angle C A D=?$
$\angle C B D=\angle A D B(\because A D \| B C)$
$\angle A D B=46$
In $\triangle A D O$
$\angle C A D+\angle A D B \neq 68=180$
$\angle C A D+46+68=180$
$\angle C A D+114=180$
$\quad[\angle C A D=66$
(ii) $\angle A C D=?$
$\begin{aligned} \angle D O A+\angle D O C &=180^{\circ}(\because \text { Straight line }) \\ 68+& \angle D O C=180^{\circ} \\ & \angle D O C=180-68 \\ & \angle D O C=112^{\circ} \end{aligned}$
In $\triangle$ DOC
$\angle C D O+\angle D O C+\angle A C D=180^{\circ}$
$112+30+\angle A C D=180$
$\angle A C D+142=180$
$\angle A C D=38^{\prime}$
(iii) $\begin{aligned} \angle A D C &=\angle A D O+\angle B D C \\ &=46+30 \\ \angle A D C &=76^{\prime} \end{aligned}$
Question 10
Sol :
$\overline{A D}=\overrightarrow{B C}$ (sides of $\|$ gm $)$
$\angle A N D=\angle C P B=90^{\circ}$
$\angle D A N=\angle B C P(: B C \| A D)$
From SAA Congruence
$\triangle A N D \cong \triangle B P C$
(ii) As $\Delta D N \cong \triangle B A P$
$\therefore \quad \overline{A N}=\overline{C P}$
Question 11
Sol :
In parallelogram ABCR
$\overrightarrow{A B}=\overline{R C}(:$ opposite sides $) \rightarrow(1)$
In parallelogram ABPC
$\overline{A B}=\overline{C P}$ ------② (∵ opposite sides )
(1) + (2)
$\begin{aligned} \overline{A B}+A \bar{B} &=\overline{R C}+\overline{C P} \\ 2 \overline{A B} &=\overline{R P} \rightarrow(3) \\ 2 \overline{A C} &=\overline{P O} \rightarrow(4) \\ 2 \overline{B C} &=Q \bar{R} \rightarrow(5) \end{aligned}$
(3) $+(\mathbb{4})+(-5)$
$2(A \bar{B}+A \bar{C}+\overline{B C})=\overline{P O}+Q K+R P$
Comments
Post a Comment