ML AGGARWAL CLASS 8 Chapter 13 Understanding Quadrilaterals Exercise 13.3

 Exercise 13.3

Question 1

Sol :
(i) Square, Rhombus

(ii) Square, Rectangle


Question 2

Sol :
(i) I. opposite sides are equal and opposite sides are parallel
    II. Adjacent angles are Supplementary

(ii) I. It has four sides
     II. Sum of all interior angles in 360

(iii) I. All the sides are equal
II. All interior angles are 90
III. Diagonals cut perpendicularly.

(iv) I. opposite sides are equal
II. All the interior angles are 90

Question 3

Sol :
(i) Parallelogram, square, rectangle, rhombus

(ii) square,rhombus

(iii) Square, rectangle


Question 4 

Sol :






Given 

side of Rhombus = one diagonal of rhombus 

A D=D C=A C

ADC is a equilateral triangle.

ADC=DAC=DCA=60


leACB is also a equilateral triangle

CAB=ABC=BCA=60

ADB=DAC+CAB=60+60=120

DCB=DCA+ACB=60+60=120

Angles of rhombus 60,120,60,120

Question 5

Sol :








ABCD is a rhombus diagonals rhombus bisects each other 

x=8y=6.

Diagonals of rhombus cuts orthogonally

In ΔleAOB

¯DA2+¯OB2=¯AB2( Pythagoras Theorem )

x2+y2=z2

82+62=z2

z2=64+36

z2=100

z = 10


Question 6

Sol :






ABCD is a trapezium

A:D=5:7

B=(3x+11)

C=(5x31)

From the property of trapezium

A+D=180

Let A,D=5y,7y

5y+7y=18012y=180y=15A=5y=5×15=75D=7y=7×15=105

B+C=180

3x+11+5x31=180

8 x-20=180

8 x=180+20

8 x=200

x=2008

x=25

B=3x+11.=3×25+11=75+11B=86C=5x31=5×2531=12531C=94

∴ A=75,B=86,C=94,D=105


Question 7

Sol :









CEB:ECB=3:2

CBE=90( angle in rectangle )

∴ In Δ ECB

Let

CEB=3x,ECB=2x.

CEB+ECB+CBE=180

3x+2 x+90=180

5 x+90=180

5 x=980-90

5 x=90

x=905

x=18


(ii) CEB=3x=3×18=54

At ' c

CEB+DCE=DCB

54+DCE=90 (∵Angle in rectangle)

DCE=9054

DCE=36

DCE+DCF=180( Forms Straightine )36+DCF=180DCF=18036DCF=144

Question 8

Sol :

Given ABCD is a rectangle

AO=¯OB[ intersect at 'O']

DAB=OBA=x.

(i)  In Δ AOB

AOB+ABO+OAB=180118+x+x=1802x=1801182x=62x=622x=31

ABO=31


(ii) AOB+AOD=180( Forms straight line 118+AOD=180.AOD=180118AOD=62

OD=¯OA( diagonals bisect each other)

DAO=ADO=y

  In Δ AOD

DAO+ADO+AOD=180

y+y62=180

2y+62=1802y=180622y=118y=1182y=59ADO=59


(iii) Similarly by taking Δ  BOC

We can prove OCB=59

Question 9

Sol :







Give ABCD is a rhombus

ABD=50

In AOB (∵In rhombus, diagonals cut perpendicularly )

AOB+OAB+OBA=180

90+OAB+50=180OAB140=180OAB=180140OAB=40

OAB=CAB=40


(ii) BCD=?ABDC

CAB=ACD=40

BCD=2×ACD (∵diagonal in rhombus, bisects the angle )

BCD=2×40

BCD=80


(iii) ADC

ADC=ABC (∵opposite angles are equal in rhombus )

ADC=2×ABD

ADC=2×50

ADC=100


Question 10

Sol :








In a trapezium

C+B=180112+B=180B=180102B=78

Given 
¯AD=¯CBC=D=102A=B=78

∴ Angles in trapezium 78;78,102,102


Question 11

Sol :
















Given PQRS is a kite

Q=S=120x=120

In a quadrilateral

p+Q+R+S=360y+120+50+1202360y+290=360y=360290y=70

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2