ML AGGARWAL CLASS 8 Chapter 13 Understanding Quadrilaterals Exercise 13.3
Exercise 13.3
Question 1
Sol :
(i) Square, Rhombus
(ii) Square, Rectangle
Question 2
Sol :
(i) I. opposite sides are equal and opposite sides are parallel
II. Adjacent angles are Supplementary
(ii) I. It has four sides
II. Sum of all interior angles in 360∘
(iii) I. All the sides are equal
II. All interior angles are 90∘
III. Diagonals cut perpendicularly.
(iv) I. opposite sides are equal
II. All the interior angles are 90∘
Question 3
Sol :
(i) Parallelogram, square, rectangle, rhombus
(ii) square,rhombus
(iii) Square, rectangle
Question 4
Sol :
Given
side of Rhombus = one diagonal of rhombus
A D=D C=A C
∴△ADC is a equilateral triangle.
∴∠ADC=∠DAC=∠DCA=60∘
△leACB is also a equilateral triangle
∴∠CAB=∠ABC=∠BCA=60∘
∠ADB=∠DAC+∠CAB=60′+60′=120∘
∠DCB=∠DCA+∠ACB=60+60=120∘
∴ Angles of rhombus 60∘,120∘,60∘,120∘
Question 5
Sol :
ABCD is a rhombus diagonals rhombus bisects each other
∴x=8y=6.
Diagonals of rhombus cuts orthogonally
In ΔleAOB
¯DA2+¯OB2=¯AB2(∵ Pythagoras Theorem )
x2+y2=z2
82+62=z2
z2=64+36
z2=100
z = 10
Question 6
Sol :
ABCD is a trapezium
∠A:∠D=5:7
∠B=(3x+11)∘
∠C=(5x−31)∘
From the property of trapezium
∠A+∠D=180∘
Let ∠A,∠D=5y,7y
∴5y+7y=180∘12y=180∘y=15∘∠A=5y=5×15=75∘∠D=7y=7×15=105∘
∠B+∠C=180∘
3x+11+5x−31=180∘
8 x-20=180
8 x=180+20
8 x=200
x=2008
x=25∘
∠B=3x+11.=3×25+11=75+11∠B=86∘∠C=5x−31=5×25−31=125−31∠C=94∘
∴ ∠A=75∘,∠B=86∘,∠C=94∘,∠D=105∘
Question 7
Sol :
∠CEB:∠ECB=3:2
∠CBE=90∘(∵ angle in rectangle )
∴ In Δ ECB
Let
∠CEB=3x,∠ECB=2x.
∠CEB+∠ECB+∠CBE=180′
3x+2 x+90=180
5 x+90=180
5 x=980-90
5 x=90
x=905
x=18∘
(ii) ∠CEB=3x=3×18=54∘
At ' c′
∠CEB+∠DCE=∠DCB
54∘+∠DCE=90∘ (∵Angle in rectangle)
∠DCE=90−54
∠DCE=36∘
∠DCE+∠DCF=180∘(∵ Forms Straightine )36∘+∠DCF=180∘∠DCF=180−36∘∠DCF=144∘
Question 8
Sol :
Given ABCD is a rectangle
→AO=¯OB[∵ intersect at 'O']
∴∠DAB=∠OBA=x.
(i) In Δ AOB
∠AOB+∠ABO+∠OAB=180′118+x+x=180∘2x=180−1182x=62x=622x=31′
∴∠ABO=31∘
(ii) ∠AOB+∠AOD=180∘(∵ Forms straight line 118+∠AOD=180∘.∠AOD=180−118∠AOD=62∘
→OD=¯OA(∵ diagonals bisect each other)
∠DAO=∠ADO=y
In Δ AOD
∠DAO+∠ADO+∠AOD=180∘
y+y−62=180
2y+62=1802y=180−622y=118y=1182y=59∘∴∠ADO=59∘
(iii) Similarly by taking Δ BOC
We can prove ∠OCB=59∘
Question 9
Sol :
Give ABCD is a rhombus
∠ABD=50∘
In △′′ AOB (∵In rhombus, diagonals cut perpendicularly )
∴∠AOB+∠OAB+∠OBA=180∘
90+∠OAB+50∘=180∠OAB−140∘=180∠OAB=180−140∠OAB=40∘
∠OAB=∠CAB=40∘
(ii) ∠BCD=?AB‖DC
∴∠CAB=∠ACD=40∘
∠BCD=2×∠ACD (∵diagonal in rhombus, bisects the angle )
∠BCD=2×40∘
∠BCD=80∘
(iii) ∠ADC
∠ADC=∠ABC (∵opposite angles are equal in rhombus )
∠ADC=2×∠ABD
∠ADC=2×50∘
∠ADC=100∘
Question 10
Sol :
In a trapezium
∠C+∠B=180∘112∘+∠B=180∘∠B=180−102∠B=78∘
Given
¯AD=¯CB∴∠C=∠D=102∘∴A=∠B=78∘
∴ Angles in trapezium 78;78∘,102∘,102∘
Question 11
Sol :
Given PQRS is a kite
∴∠Q=∠S=120∘x=120∘
In a quadrilateral
∠p+∠Q+∠R+∠S=360y+120+50+1202360y+290=360y=360−290y=70∘
Comments
Post a Comment