ML AGGARWAL CLASS 8 Chapter 18 Mensuration Exercise 18.1
Exercise 18.1
Question 1
Sol :
Given
Ratio of length and breadth of rectangular field = 9.5
Area of field = 14580$m^{2}$
Cost of fence =₹ 3.25 m
Let length , breadth = 9x , 5x
Area = 14580
$\begin{aligned} \ell \times b=& 14580 \\ 9 x \times 5 x &=14580 \\ 45 x^{2} &=14580 \\ x^{2} &=\frac{14580}{45} \\ x^{2} &=324 \\ x &=\sqrt{324} \end{aligned}$
x=18 m
$\therefore$ length $=9 x=9 \times 18=$ 162m
breadth =5 x$=5 \times 18$=90 m
Length of fence= perimeter of rectangle section
=2(1+b)
=2(162+90)
=2(252)
Length of fence = 504m
Cost of fence = $504 \times 3.25$
=₹ 1638
Question 2
Sol :
Given
Dimensions of rectangle = 16m $\times 9m$
let side of square =x m
Perimeter of rectangle = area of square
$\begin{aligned} l\times b &=x^{2} \\ 16 \times 9 &=x^{2} \\ x &=\sqrt{16 \times 9} \\ x &=4 \times 3=12 m \\ x &=12 m \end{aligned}$
$\therefore$ Side of square =12 m
Perimeter of square = 4x
$=4 \times 12$
=48 m
∴ Perimeter rectangle exceeds perimeter of square by 50 - 48 = 2m
Question 3
Sol :
Given
Length of adjacent sides = 24 cm and 18 cm
Distance between longer sides = 12 cm
Let ten distance between shorter sides = x cm
Area of parallelogram = Side $\times$ ten distance between the opposite sides
$\therefore \quad 24 \times 12=18 \times x$
$x=\frac{24 \times 12}{18}$
x=16 cm
∴ Ten distance between shorter sides = 16 cm
Question 4
Sol :
Given
Plot dimension = $24 \mathrm{~m} \times 24 \mathrm{~m}$
House dimensions $=18 \mathrm{~m} \times 12 \mathrm{~m}$.
∴ Garden Area = plot area - house area
= $24 \times 24-18 \times 12$
Garden Area $=360 \mathrm{~m}^{2}$
Given
Cost of developing garden = Rs 50/$m^{2}$
∴ Total cos of developing garden around house = 360$\times 50$
=Rs 18000
Question 5
Sol :
Dimension of tiles ( Parallelogram) $=18 \mathrm{~cm} \times 6 \mathrm{~cm}$ Height
Floor area = 540$m^{2}$
Area of one tile = $18 \mathrm{~m} \times \operatorname{6cm}(b \times h)$
= $108 \mathrm{~cm}^{2}$
Area of one tile = $108 \times 10^{-4} m^{2}\left(∴-1 m=10^{-2} m\right)$
No.of tiles required = $\frac{\text { A Total Area }}{\text { Area of one tile }}$
$=\frac{540}{108 \times 10^{-4}}$
No.of tiles required = 50000
Question 6
Sol :
(a) Diameter semi circle = 2.8cm
perimeter of semi circle $=\frac{\pi d}{2}$
$=\frac{\pi \times 2.8}{2}$
$=\frac{3.14 \times 2.8}{2}$
$=3.14 \times 1.4$
Perimeter of semi circle = 4.398 cm
Perimeter of given shape
= $\overline{A B}+\overline{B C}+\overline{C D}+$ Semi circle perimeter
=1.5+2.8+1.5+4.398
= 110.198 cm
Perimeter of given shape
= $\overline{O A}+$ Semi circle $A B+\overline{O B}$
=2+4.398+2
=8.398 cm
∴ Comparing three figure perimeter values , we can
Say in case of figure ' B' and has covered more distance
Question 7
Sol :
Given
Area between concentric
Circle = $770 \mathrm{cm}^{2}$
Outer circle radius = 21 cm
Let inner circle radius = r cm
Outer circle area - Inner circle area = $770 \mathrm{~cm}^{2}$
$\begin{aligned} \pi(21)^{2}-\pi r^{2}=& 770 \\ \pi\left(21^{2}-r^{2}\right) &=770 \\ 21^{2}-r^{2}=& 245.098 \\ 441-r^{2} &=245.098 \\ r^{2} &=441-245.098 \\ r^{2} &=195.90 \\ r &=\sqrt{195.9} \\ r &=13.996 \approx 14 \mathrm{~cm} . \end{aligned}$
Radius of inner circle =14cm.
Question 8
Sol :
Given
Area of square = $121 \mathrm{~cm}^{2}$
$s^{2}=121$
$S=\sqrt{121}$
S=11 cm
∴ Side of square = 11 cm
∴ Length of wire perimeter of square = $4 \times 11 \mathrm{~cm}$
=44 cm
Now wire is bent into a form of Circle
∴Length of wire= perimeter of circle
44 =2$\pi r$ r = radius of circle
$\pi r=\frac{44}{2}$
$\pi r=22$
$r= \frac{22}{\pi}$
$r=\frac{22}{3 \cdot 14}$
$r=7 \mathrm{~cm}$
radius of circle = 7cm
Area of circle = $\pi r^{2}$
$=3.14 \times 7^{2}$
Area of circle $=153.938 \mathrm{cm}^{2}$
Question 9
Sol :
(i)
Area of $\Delta^{\text {le}}$ ABC
$=\frac{1}{2} \times b \times h$
$=\frac{1}{2} \times 3 \times 4$ (∵right angle triangle )
$=\frac{1}{2} \times 3 \times 4$
$=\frac{1}{2} \times 12$
$=6 \mathrm{cm}^{2}$
(ii) $B C^{2}=A B^{2}+A C^{2} \quad(\therefore$ Pythagorus theorem $)$
$B C^{2}=3^{v}+4^{2}$
$B C^{2}=9+16$
$B C^{2}=25$
$B C=\sqrt{25}$
BC=5 cm
(iii) Area of triangle ABC=6$c m^{2}$
By taking $\overline{B C}$ As base
Area of triangle = $\frac{1}{2} \times b \times h$
$=\frac{1}{2} \times CB\times A D$
$6=\frac{1}{2} \times 6 \times A D$
$A D=\frac{6 \times 2}{6}$
AD=2 cm
Question 10
Sol :
Dimension of rectangular garden = 80m$\times$40m
width of path (w)=2.5 m
(i) Area of cross path = $l \times w+b \times w-(w \times w)$
$=80 \times 2.5+40 \times 2.5-(2.5 \times 2.5)$
$293.75 \mathrm{~m}^{2}$
Area of unshaded portion
=Area of garden - area of cross path
= $80 \times 40-(293.75)$
=$2906.25 \mathrm{~m}^{2}$
Question 11
Area of shaded portion = Area of square ABCD - [Area of triangle ABC + Area of triangle AFD + Triangle EFC]
=$18 \times 12-\left[\frac{1}{2} \times 1 \times 18+\frac{1}{2} \times 12 \times 10+\frac{1}{2} \times 5 \times 8\right]$
=$216-[7 \times 9+6 \times 10+5 \times 4]$
=216-[63+60+20]
=216-143
=$73 \mathrm{~cm}^{2}$
∴ Area of shaded portion 73$\mathrm{cm}^{2}$
Question 12
Sol :
Area of square EFGH = $729 \mathrm{~m}^{2}$
∴ side of lawn = $\sqrt{729}$
=27 m
Area of square ABCD = $295 \mathrm{~m}^{2}$
Side of ABCD = $\sqrt{295}$
Side of ABCD = 17.175m
(i) ∴ Length of square filed including lawn and path =27 m
(ii) Width of the path = side of EFGH - side of ABCD
=27 - 17.175
width of the path = 9.825m
Comments
Post a Comment