ML AGGARWAL CLASS 8 Chapter 18 Mensuration Exercise 18.2

  Exercise 18.2

Question 1

Sol :









Let ABCD is a rhombus 

AB=BC=CD=AD=13 cm.AC=10Cm.

'O' intersection point of diagnals 
¯OA=¯OC=5 cm.

In Le AOB


(i) ¯AB2=¯OA2+¯OB2 (∵pythogorus theorem)

132=52+¯OB2

169=25+¯OB2

¯OB2=16925

¯OB2=144

¯OB=144

¯OB=12 cm

¯BD=2ׯOB

=2×12

¯BD=24Cm


(ii) Length of diagonal = 24cm

Area of rhombus =12×d1×d2

=12×10×24

Area of rhombus =120 cm2



Question 2

Sol :

Given ABCD is a trapezium 









Area of trapezium = 12× (Sum of parallel sides) × (Distance between parllel sides)

=12×(1.5+8)×14

Area of trapezium = 66.5m2


Question 3

Sol :

Given 

Area of a trapezium = 360 m2

distance between two parallel side = 20m

Length of one parallel side = 25m

Let unknown parallel sides = x

Area of a trapezium =12 (sum of parallel sides) × (distance between parallel side)

360=12(25+x)×20

(25+x)=360×220
25+x=36
x=36-25
x=11 m

∴ Another parallel side length =11 m


Question 4

Sol :

Given 

ABCD is a rhombus 










¯BD=13Cm

¯AB=¯BC=¯CD=¯AD=65 cm

Altitude ¯AC=5 cm


(i) Area of rhombus =12× (product of diagonals)

=12×(13×5)

=6.5×5

Area of rhombus = 32.5 cm2


(ii) Another diagonal ¯AC=5 cm.


Question 5

Sol :

(i) 








Area of trapezium ACDE

=12(ED+AC)×FG

=12(7+13)×6.5

=12×20×6.5

=65 m2


(ii) Area of parallelogram ABCE = Base × distance between parallel sides 

=7×6.5

=45.5 m2


(iii) The area of triangle BCD= 12×BC×DH

AC=AB+BC
13=7+BC

BC=13-7
BC=6 m

DH=GF=6.5 m

ஃ The area of triangle BCD= 12×6×6.5

=3×6.5

=19.5 m2

Question 6

Sol :










ABCD is a rhombus and EFG is triangle 

Given 

Area of rhombus = Area of a triangle 

12×d1×d212×b×h

12×22×d1=12×24.8×16.5

22×d1=24.8×16.5d1=24.8×16.522d1=18.6 cm.

Length of diagonal = 18.6 cm


Question 7

Sol :
Given

Perimeter of trapezium = 52 cm




Altitude = 8 cm

Length of parallel sides = perimeter - 2(parallel sides)

= 52 - 2× 10

=52- 20

Sum of parallel sides = 32 cm

Area of trapezium =12× (Sum of parallel side) × Altitude

=12×32×8=32×4

Area of trapezium = 128 cm2


Question 8

Sol :
Given 

area of trapezium = 540cm2

Altitude =18 cm

Ratio of length of parallel sides = 7:5

Let length of parallel sides = 7x, 5 x

∴ Area of trapezium = 12× (Sum of parallel side) × Altitude

540=12×(7x+5x)×18

540=12(12x)×18

540=6×18×x

x=5406×18

x=5 cm

Length of parallel sides = 7x=7×5=35 cm

5x=5×5=25 cm.

Question 9

Sol :

(i) 













Area enclosed by shape = Area of square AHGE + Area of triangle BCH + Area of square DCGE

=5×5+12×2×9+4×3
=25+9+12

=46 cm2


(ii) 











Area enclosed by shape = Area of square ABCD - [Area of triangle EFDH+ Area of triangle HIJ]

=9×9[12×5×7+12×5×7]

=81(5×7)8135=46 cm2


Question 10

Sol :
(i) 








In ΔleABD

AB2+AD2=DB2 (∵Pythagoras theorem)

402+AD2=412

AD2=412402

=1681-1600

AD2=81

AD=81

AD=9 cm


(ii) Area of trapezium = 12× (Sum of parallel side) × Altitude

=12(15+40)×9

=12×55×9

Area of trapezium = 247.5 cm2


(iii) Area of triangle BCD= Area of trapezium ABCD -[area of triangle ADB]

=247.5[12×AB×AD]

=247.5[12×40×9]

=247.5-[180]

Area of triangle BCD = 67.5 cm2

 

Question 11

Sol :







 Area of section ①

Area of trapezium = 12× (Sum of parallel side) × Altitude

=12×(28+20)×4

=96 cm2

Area section (1) =96 cm2


Ares of section ② 
















Area of trapezium = 12× (Sum of parallel side) × Altitude

=12×(24+32)×4

Ares of section ②  =112 cm2







Section ③ Dimension are same as section ①

ஃ Area of section ③=96 cm2


Section ④ Dimension are same as section ②

∴ Area of section ④ = 112 cm2

Question 12

Sol :











From ΔleABD

BD2=AB2+AD2

BD2=62+882

BD2=36+64

BD2=100

BD=10 cm


From Δle BDC

BC2=BDN+DC2

262=102+DC2

676=100+DC2

DC2=676100

DC2=576

DC=576

DC=24Cm


Area of quadrilateral ABCD = Area of ΔleBAD + Area of ΔleBDC

=12(AB×AD)+12(BD×DC)

=12(6×8)+12(10×24)

=12(48)+12(240)
=24+120

Area of quadrilateral ABCD = 144 cm2



Question 13

Sol :

















Given ABCDEFGH a regular octagon 

Area of octagon ABCDEFGH = Area of square ABCH + Area of square HCDG + Area of square GDEF

2× Area of square ABCH + Area of square HCDG 

=2×(12×(8+15)×6]+(8×15)

=(2×12×23×6)+(8×15)

=23×6+8×15

=138+120

=258 m22



Question 14

Sol :
















Jaspreet's diagram 

Area of ABCD = Area square  ABCF+ Areaof square FCDE

=2×( Areaof ABCF) (∵ Both are symmetric)

=2×(12×(AB+CF)×AF)

=2×12×(18+32)×182

50×9

Area of ABCDE = 450 cm2


Rahul's diagram 
-----------------------












Area of pentagon ABCDE = area of triangle DEC + area of square ECBA 

=12(EC×DF)+BC×AB

=12×18×14+18×18

=126+324

=450 cm2

We can find area of pentagon in this way 













Mahesh 's diagram 


Question 15

Sol :








Area of shaded pentagon ABECD = Area of square ABCD - [Area of triangle BEC]

=18×10[12×8×EB](1)

From triangle BEC

BC2=EC2+EB2

102=82+EB2

EB2=10064

EB2=36

EB=36

EB=6Cm

Sub EB value is eq.. ①

∴ Area of shaded pentagon ABECD = 180[12×8×6]

=180[4×6]
=180-24
∴ Area of shade pentagon ABECD = 156 cm2

Question 16

Sol :












Given 

ABCDE is a polygon 

AD=8 cmAH=6 mAG=4 cmAF=3Cm.BF=2 cm,CH=3 cm,EG=2.5Cm.

Area of polygon ABCDE = area of triangle ABF + Area of square BCHF + Area of triangle CHD+ Area of triangle AGE

=12(AF×BF)+12(BF+CH)×FH+12(DH×CH)+\frac{1}{2}(A D \times E G)$

AD=AH+HD8=6+HDHD=86HD=2Cm

AH=AF+FH

6=3+FH

FH=6-3

FH=3 cm


∴ Area of polygon ABCDE = 12(3×2)+12(5)×3+12×2×3+12(8×2.1)

=3+7.5+3+10

Area of Polygon ABCDE =23.5cm2


Question 17

Sol :

Given PQRSTU is a polygon 














PS=11 cm

PY=9 cm

PX=8 cm

PW=5 cm

PV=3 cm

QV=5 cm

UW=4 cm

RX=6 cm

TY=2 cm

VX=PXPY=83VX=5 cm

WY=PY-PW=9-5=4 cm

XS=PSPX=118XS=3cm

YS=PSPY=119YS=2am

=Area of polygon PQRSTU = Area of triangle PQN + Area of square  QRXV + Area of triangle XRS + Area of triangle PUW + Area of square UMNT + Area of triangle YST

=(12×PV×QV)+ 12(QV+RX)×(VX) +12(RX)(XS)12× PW × VW +12(VW+XT)×(YW) +12(YS)×(YT)

12×3×5+12(5+6)×5+12(6×3)+12(5×4)+12(4×2)×412(2×2)

12(15+55+18+20+24+4)

12(136)

68 cm2

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2