ML AGGARWAL CLASS 8 Chapter 18 Mensuration Exercise 18.2
Exercise 18.2
Question 1
Let ABCD is a rhombus
AB=BC=CD=AD=13 cm.AC=10Cm.
'O' intersection point of diagnals
¯OA=¯OC=5 cm.
In △Le AOB
(i) ¯AB2=¯OA2+¯OB2 (∵pythogorus theorem)
132=52+¯OB2
169=25+¯OB2
¯OB2=169−25
¯OB2=144
¯OB=√144
¯OB=12 cm
¯BD=2ׯOB
=2×12
¯BD=24Cm
(ii) Length of diagonal = 24cm
Area of rhombus =12×d1×d2
=12×10×24
Area of rhombus =120 cm2
Question 2
Sol :
Given ABCD is a trapezium
Area of trapezium = 12× (Sum of parallel sides) × (Distance between parllel sides)
=12×(1.5+8)×14
Area of trapezium = 66.5m2
Question 3
Sol :
Given
Area of a trapezium = 360 m2
distance between two parallel side = 20m
Length of one parallel side = 25m
Let unknown parallel sides = x
Area of a trapezium =12 (sum of parallel sides) × (distance between parallel side)
360=12(25+x)×20
(25+x)=360×220
25+x=36
x=36-25
x=11 m
∴ Another parallel side length =11 m
Question 4
Sol :
Given
ABCD is a rhombus
¯BD=13Cm
¯AB=¯BC=¯CD=¯AD=65 cm
Altitude ¯AC=5 cm
(i) Area of rhombus =12× (product of diagonals)
=12×(13×5)
=6.5×5
Area of rhombus = 32.5 cm2
(ii) Another diagonal ¯AC=5 cm.
Question 5
Sol :
Area of trapezium ACDE
=12(ED+AC)×FG
=12(7+13)×6.5
=12×20×6.5
=65 m2
(ii) Area of parallelogram ABCE = Base × distance between parallel sides
=7×6.5
=45.5 m2
(iii) The area of triangle BCD= 12×BC×DH
AC=AB+BC
13=7+BC
BC=13-7
BC=6 m
DH=GF=6.5 m
ஃ The area of triangle BCD= 12×6×6.5
=3×6.5
=19.5 m2
Question 6
Sol :
ABCD is a rhombus and EFG is triangle
Given
Area of rhombus = Area of a triangle
12×d1×d2 = 12×b×h
12×22×d1=12×24.8×16.5
22×d1=24.8×16.5d1=24.8×16.522d1=18.6 cm.
Length of diagonal = 18.6 cm
Question 7
Sol :
Given
Perimeter of trapezium = 52 cm
Altitude = 8 cm
Length of parallel sides = perimeter - 2(parallel sides)
= 52 - 2× 10
=52- 20
Sum of parallel sides = 32 cm
Area of trapezium =12× (Sum of parallel side) × Altitude
=12×32×8=32×4
Area of trapezium = 128 cm2
Question 8
Sol :
Given
area of trapezium = 540cm2
Altitude =18 cm
Ratio of length of parallel sides = 7:5
Let length of parallel sides = 7x, 5 x
∴ Area of trapezium = 12× (Sum of parallel side) × Altitude
540=12×(7x+5x)×18
540=12(12x)×18
540=6×18×x
x=5406×18
x=5 cm
Length of parallel sides = 7x=7×5=35 cm
5x=5×5=25 cm.
Question 9
Sol :
Area enclosed by shape = Area of square AHGE + Area of triangle BCH + Area of square DCGE
=5×5+12×2×9+4×3
=25+9+12
=46 cm2
Area enclosed by shape = Area of square ABCD - [Area of triangle EFDH+ Area of triangle HIJ]
=9×9−[12×5×7+12×5×7]
=81−(5×7)⇒81−35=46 cm2
Question 10
Sol :
In ΔleABD
AB2+AD2=DB2 (∵Pythagoras theorem)
402+AD2=412
AD2=412−402
=1681-1600
AD2=81
AD=√81
AD=9 cm
(ii) Area of trapezium = 12× (Sum of parallel side) × Altitude
=12(15+40)×9
=12×55×9
Area of trapezium = 247.5 cm2
(iii) Area of triangle BCD= Area of trapezium ABCD -[area of triangle ADB]
=247.5−[12×AB×AD]
=247.5−[12×40×9]
=247.5-[180]
Area of triangle BCD = 67.5 cm2
Question 11
Sol :
Area of section ①
Area of trapezium = 12× (Sum of parallel side) × Altitude
=12×(28+20)×4
=96 cm2
∴ Area section (1) =96 cm2
Ares of section ②
Area of trapezium = 12× (Sum of parallel side) × Altitude
=12×(24+32)×4
Ares of section ② =112 cm2
Section ③ Dimension are same as section ①
ஃ Area of section ③=96 cm2
Section ④ Dimension are same as section ②
∴ Area of section ④ = 112 cm2
Question 12
Sol :
From ΔleABD
BD2=AB2+AD2
BD2=62+882
BD2=36+64
BD2=100
BD=10 cm
From Δle BDC
BC2=BDN+DC2
262=102+DC2
676=100+DC2
DC2=676−100
DC2=576
DC=√576
DC=24Cm
Area of quadrilateral ABCD = Area of ΔleBAD + Area of ΔleBDC
=12(AB×AD)+12(BD×DC)
=12(6×8)+12(10×24)
=12(48)+12(240)
=24+120
Area of quadrilateral ABCD = 144 cm2
Question 13
Sol :
Given ABCDEFGH a regular octagon
Area of octagon ABCDEFGH = Area of square ABCH + Area of square HCDG + Area of square GDEF
= 2× Area of square ABCH + Area of square HCDG
=2×(12×(8+15)×6]+(8×15)
=(2×12×23×6)+(8×15)
=23×6+8×15
=138+120
=258 m22
Question 14
Sol :
Jaspreet's diagram
Area of ABCD = Area square ABCF+ Areaof square FCDE
=2×( Areaof ◻ABCF) (∵ Both are symmetric)
=2×(12×(AB+CF)×AF)
=2×12×(18+32)×182
= 50×9
Area of ABCDE = 450 cm2
Rahul's diagram
-----------------------
Area of pentagon ABCDE = area of triangle DEC + area of square ECBA
=12(EC×DF)+BC×AB
=12×18×14+18×18
=126+324
=450 cm2
We can find area of pentagon in this way
Mahesh 's diagram
Question 15
Sol :
Area of shaded pentagon ABECD = Area of square ABCD - [Area of triangle BEC]
=18×10−[12×8×EB]→(1)
From triangle BEC
BC2=EC2+EB2
102=82+EB2
EB2=100−64
EB2=36
EB=√36
EB=6Cm
Sub EB value is eq.. ①
∴ Area of shaded pentagon ABECD = 180−[12×8×6]
=180−[4×6]
=180-24
∴ Area of shade pentagon ABECD = 156 cm2
Question 16
Sol :
Given
ABCDE is a polygon
AD=8 cmAH=6 mAG=4 cmAF=3Cm.BF=2 cm,CH=3 cm,EG=2.5Cm.
Area of polygon ABCDE = area of triangle ABF + Area of square BCHF + Area of triangle CHD+ Area of triangle AGE
=12(AF×BF)+12(BF+CH)×FH+12(DH×CH)+\frac{1}{2}(A D \times E G)$
AD=AH+HD8=6+HDHD=8−6HD=2Cm
AH=AF+FH
6=3+FH
FH=6-3
FH=3 cm
∴ Area of polygon ABCDE = 12(3×2)+12(5)×3+12×2×3+12(8×2.1)
=3+7.5+3+10
Area of Polygon ABCDE =23.5cm2
Question 17
Sol :
Given PQRSTU is a polygon
PS=11 cm
PY=9 cm
PX=8 cm
PW=5 cm
PV=3 cm
QV=5 cm
UW=4 cm
RX=6 cm
TY=2 cm
VX=PX−PY=8−3VX=5 cm
WY=PY-PW=9-5=4 cm
XS=PS−PX=11−8XS=3cm
YS=PS−PY=11−9YS=2am
=Area of polygon PQRSTU = Area of triangle PQN + Area of square QRXV + Area of triangle XRS + Area of triangle PUW + Area of square UMNT + Area of triangle YST
=(12×PV×QV)+ 12(QV+RX)×(VX) +12(RX)(XS) + 12× PW × VW +12(VW+XT)×(YW) +12(YS)×(YT)
= 12×3×5+12(5+6)×5+12(6×3)+12(5×4)+12(4×2)×4 + 12(2×2)
= 12(15+55+18+20+24+4)
= 12(136)
= 68 cm2
Comments
Post a Comment