ML AGGARWAL CLASS 8 Chapter 18 Mensuration Exercise 18.4
Exercise 18.4
Question 1
Sol :
Given surface area = $384 \mathrm{cm}^{2}$
(i) Let length of side of cube = a
Surface area of cube = $6 a^{2}$
$6 a^{2}=384$
$a^{2}=\frac{384}{6}$
$a^{2}=64$
$a=\sqrt{64}$
a=8 cm
∴ Length of edge = 8cm
(ii) Volume of the cube
Volume of the cube = $a^{3}$
$=8^{3}$
Volume of the cube $=512 \mathrm{~cm}^{3}$
Question 2
Sol :
Given
Radius of Cylinder = 5 cm
Height of Cylinder = 10 cm
Surface area of Cylinder =$2 \pi r h$
$=2 \pi \times 5 \times 10$
Surface area of Cylinder $=100 \pi$
Question 3
Sol :
Given
Aquarium Dimensions = $70C m \times 28 \mathrm{~cm} \times 35 \mathrm{~cm}$
To cover Base , Side and back faces Total area of
Paper needed = $2(l b+b h+lh)$
=$2(70 \times 28+28 \times 35 \times 10 \times 35)$
=$2(5390)$
=$10780 \mathrm{~cm}^{2}$
Question 4
Sol :
Given
Internal dimension of hall = $15 \mathrm{~m} \times 12 \mathrm{~m} \times 4 \mathrm{~m}$
Area of four walls = l h+b h+l h+lh
=2(l h+ b h)
$=2(15 \times 4+12 \times 4)$
=2(60+48)
$=2 \times 108$
Area of four walls = $216 \mathrm{m}^{2}$
Given
4 Windows of dimension = $2 m \times 1.5 m$
2 doors of dimension = $1.5 \times 2.5 \mathrm{~m}^{2}$
∴ Remaining walls area = Area of four walls - [4 $\times$ Area of window + 2 $\times$ area of door]
$=216-[4 \times 2 \times 1.5+2 \times 1.5 \times 2.5]$
=216-[12+7.5]
=216=19-5
∴Remaining walls area $=196.5 \mathrm{~m}^{2}$
Given
Cost for white washing walls = Rs $5 / m^{2}$
Total Cost of white washing walls = $5 \times 196.5$
$=Rs 982.5$
Area of Ceiling = lb = 15 $\times$ 12
= $180 \mathrm{~m}^{2}$
Total area = Area of walls + Area of ceiling
= 196.5 + 180
Total Area = $376.5 \mathrm{~m}^{2}$
Total Cost of white washing walls including ceiling
$=5 \times 376.5$
=Rs 1882.5
Question 5
Sol :
Swimming Pool length = 50m
Breadth = 30m
Height = 2.5m
Area of walls and base = lb +lh + bh+ lh+bh
$=2(1 h+b h)+l b$
$=2(50 \times 2.5+30 \times 2.5)+50 \times 30$
$=400+1500$
Area of walls and base $=1900 \mathrm{~m}^{2}$
Given Cementing rate = Rs 27/$m^{2}$
∴ Total cost for cementing = $27 \times 1900$
=Rs 51300
Question 6
Sol :
Given rectangular hall perimeter = 236m
Hall height = 4.5m
Surface area of walls = 2 h(l+b)
$4 \cdot 5 \times 236$
Surface area of walls = 1062$m^{2}$
Painting walls cost = Rs $8.4 / m^{2}$
Total Cost of painting = $8.4 \times 1062$
Total Cost of painting= Rs 8920.8
Question 7
Sol :
Dimension of fish tank= $300 \mathrm{~m} \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}$
Given Only $\frac{3}{4}$ th of tank contain water
∴ Volume of water = $30 \mathrm{~m} \times 20 \mathrm{~m} \times 20 \times \frac{3}{4} \mathrm{Cm}$
Volume of water $=30 \mathrm{~cm} \times 20 \mathrm{~cm} \times 15 \mathrm{Cm}$
Area of tank in contact with water = walls area up to water level + base area
=2 h(l+b)+l b
$=2(30+20) \times 15+30 \times 20$
=1500+600
Area of tank in contact with water $=2100 \mathrm{~cm}^{2}$
Question 8
Sol :
Given
Volume of cuboid = $448 \mathrm{~cm}^{3}$
Let side of square = a cm
Height = 7cm
$\begin{aligned} a^{2} \times 7 &=448 \\ a^{2} &=\frac{448}{7} \\ a^{\nu} &=64 \\ a &=\sqrt{64} \\ & a=8 \mathrm{~cm} \end{aligned}$
Side of square base = 8cm
(ii) Surface area cuboid = $2\left(a^{2}+2 a h\right)$
$=2\left(8^{2}+2 \times 8 \times 7\right)$
=2(176)
Surface of area of Cuboid = $352 \mathrm{~cm}^{2}$
Question 9
Sol :
Given
Total surface area of rectangle solid = $1216 \mathrm{~cm}^{3}$
Ratio of length, breadth and height = 5:4:2
Let length , breadth and height = 5x, 4x , 2x
Total surface area = 1216
2(l b+b h+h l)=1216
$2(5 x \times 4 x+4 x \times 2 x+2 x \times 5 x)=1216$
$2\left(20 x^{2}+8 x^{2}+10 x^{2}\right)=1216$
$2 \times 38 x^{2}=1216$
$\begin{aligned} 76 x^{2} &=1216 \\ x^{2} &=\frac{1216}{76} \\ x^{2} &=16 \\ x &=\sqrt{16} \\ x &=4 \mathrm{~cm} \end{aligned}$
∴ Length 5x = $5 \times 4=20 \mathrm{~cm}$
breadth 4x = $4 \times 4=16 \mathrm{~cm}$
Height 2x = $2 \times 4=8 \mathrm{~cm}$
Volume of rectangular solid = $l \times b \times h$
$=20 \times 16 \times 8$
Volume of rectangular Solid = $2560 \mathrm{~cm}^{3}$
Question 10
Sol :
Dimension of room = $6 \times 5 \times 3.5 \mathrm{~m}^{3}$
Dimension of window = $1.5 \mathrm{~m} \times 1.4 \mathrm{~m}$
Dimension of door = $1.1 \mathrm{~m} \times 2 \mathrm{~m}$
Area of walls = $2 h(1+h)-[3 \times 1.5 \times 1.4+2 \times 1.1 \times 2]$
$=2 \times 3.5(6+5)-[6.3+4.4]$
=77-10.7
Area of walls = $66.3 \mathrm{~m}^{2}$
Area of ceiling = lb = $6 \times 5=30 \mathrm{~m}^{2}$
Total area = $66.3+30=96.3 \mathrm{~m}^{2}$
Cost of white washing = Rs $5.3 / \mathrm{m}^{2}$
Total Cost = area $\times$ cost /$m^{2}$
$=96.3 \times 5.3$
Total cost =₹ 510.39
Question 11
Sol :
Given
Dimension of Cuboidal block = $36 \mathrm{~cm} \times 32 \mathrm{~cm} \times 0.25 \mathrm{Cm} .$
(i) Volume of Cuboidal block =
$\begin{aligned} & 36 \times 32 \times 25 \\=& 28800 \mathrm{~cm}^{3} \end{aligned}$
Cube of edge = 4cm
Volume of Cube = $4^{3}$
$=64 \mathrm{~cm}^{3}$
No. of Cubes = $\frac{\text { Volume of Cuboidal block }}{\text { volume of cube }}$
=$\frac{28800}{64}$
No. of Cubes = 450
∴ From given Cuboid 450 Cubes of edge 4cm Can be costed.
(ii) Cost silver coating = Rs 0.75/$m^{2}$
Surface area of cube = $6 a^{2}$
$=6 \times 4^{2}$
$=6 \times 16$
Surface Area of cube= $96 \mathrm{~cm}^{2}$
Total surface area of cubes = $450 \times 96$
thrm{~cm}^{2}$
$=43200 \mathrm{~cm}^{2}$
Total Surface Area of Cubes = 4.32 $m^{2}$
Cost of silver coating fall cubes = $4.32 \times 0.75 \times 10^{4}$
=Rs 32400
∴ Total Cost for Silver coating of Cubes is Rs 32400
Question 12
Sol :
Given three cubes of edge lengths $=3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$
New cube edge length $=a \mathrm{~cm}$
$a^{3}=3^{3}+4^{3}+5^{3} .$
$a^{3}=216$
$a=(216)^{1 / 3}$
A surface area of cube = $6 a^{2}$
$=6 \times 6^{2}$
Surface area of cube $=216 \mathrm{~cm}^{2}$
Cost of gold coating = Rs 3.5 / $\operatorname{Cm}^{2}$
Total Cost of gold coating of cube
= area $\times$ cost /$\mathrm{cm}^{2}$
$=216 \times 3.5$
$=Rs 756$
∴ Total Cost of gold coating of cube = Rs 756
Question 13
Sol :
Given
Surface area of cylinder = $4375 \mathrm{~cm}^{2}$
Rectangular sheet width = 35cm
perimeter of circle = 35 cm
$\begin{aligned} 2 \pi r &=35 \\ r &=\frac{35}{2 \pi} \end{aligned}$
radius of base $(r)=5.57 \mathrm{~cm}$
Surface area= $2 \pi r h=4375$
$\begin{array}{rl}=211 \times \pi \mathrm{hh} & 24375 \\ =35 \times h & =4375 \\ h = \frac{4375}{35}\end{array}$
h =125 cm
Height of cylinder = 125 cm
∴ Length of sheet = 125 cm
Perimeter of sheet= $\begin{aligned} & 2(l+W) \\=& 2(125+35) \Rightarrow 2(160) \\=& 320 \mathrm{~cm} \end{aligned}$
Question 14
Sol :
Road roller diameter = 0.7m
Road roller width = 1.2m
Play ground size $= 120 \mathrm{~m} \times 44 \mathrm{~m}$
Area of ground = 5280$m ^2$
Surface area of roller =$\pi d W$
$=\pi \times 0.7 \times 1.2$
Surface area of roller = 2.538$m^{2}$
No. of revolutions to cover ground = $\frac{\text { Area of ground }}{\text { surface area of roller }}$
$=\frac{5280}{2.638}$
= $2000 \cdot 8 \approx$ 2000
∴ No , minimum no. of revolutions to cover ground is 200D
Question 15
Sol :
Given
Diameter of cylindrical container= 14cm
Height of cylindrical container= 20cm
Label Height = 20 - (2+2)
= 16cm
∴ Area of label = surface area of cylinder of height 16cm
$=\pi d h$
$=\pi \times 14 \times 16$
=$\frac{22}{7} \times 14 \times 16$
∴ Area of label = $=704 \mathrm{~cm}^{2}$
Question 16
Sol :
Given
Sum of radius and height of cylinder = 37cm
r+h= 37---1
Total surface area = 1628$\mathrm{cm}^{2}$
$\begin{aligned} 2 \pi r h &=1628 \\ r h &=\frac{1628}{2 \times 14} \\ r h &=\frac{1628 \times 7}{2 \times 22} \\ r h &=259 \end{aligned}$
(37-h) h=25 q
$37 h-h^{2}=259$
$h^{2}-37 h+259=0$
$h_{1}=27.63$
$r_{1}=37-27.63$
$r_{1}=9.37 \mathrm{~cm}$
Volume of Cylinder
$=\pi r_{1}^{2} h_{1}$
$=11 \times 9.37^{2} \times 27.63$
$v_{1}$ $=7620.96 \mathrm{~cm}^{3}$
$h_{2} =9.37$
$r_{2}=37-9.37$
$r_{2}=27.63 \mathrm{~cm}$
Volume of cylinder
$=\pi r_{2}^{2} h_{2}$
$=\pi \times27.63^{2} \times 9.32$
$V_{2}=22472.5 \mathrm{~cm}^{3}$
Question 17
Sol :
Given
Ratio between surface area and total surface area = 1:2
Total surface area = $616 \mathrm{~cm}^{2}$
$2 \pi r h: 2 \pi r(h+r)=1: 2$
$\frac{h}{h+r}=\frac{1}{2}$
2 h=h+r
h=r
∴ Height = radius
Total surface area = $616 \mathrm{~cm}^{2}$
$2 \pi r(h+r)=616 \mathrm{~cm}^{2}$
$2 \pi r(r+r)=616 \mathrm{~cm}^{2}$
$2\left(2 \pi r^{2}\right)=616 c m^{2}$
$2 \pi r^{2}=308 c m ^{2}$
$r^{2}=\frac{308}{2 \pi}$
$r^{2}=49$
$r= \sqrt{49}$
r=7 cm
r=h=7 cm
Volume of Cylinder = $\pi r^{2} h$
$=\pi(7)^{2} \times 7$
Volume of cylinder = $1077.56 \mathrm{~cm}^{3}$
Question 18
Sol :
Length of Cylinder = 77 cm=h
Inner diameter $d_{1}=4 c m$
Outer diameter $\left(d_{2}\right)$=4.4 cm
(i)Inner curved Surface area
$=\pi d_{1} h$
$=\pi \times 4 \times 77$
$=967.61 \mathrm{~cm}^{2}$
(ii) Outer curved surface area
$=\pi d_{2} h$
$=\pi \times 4.4 \times 17$
$=1064.37 \mathrm{~cm}^{2}$
(iii) Total surface area
=$\pi d _{1} h+\pi d_{2} h+2 \times \pi\left(r_{2}^{2}-r_{1}^{2}\right)$
=$967.63+1064.37+2 \pi\left(2.2^{2}-2^{2}\right)$
=967+1064.32+5.27
$=2038.08 \mathrm{~cm}^{2}$
Comments
Post a Comment