ML AGGARWAL CLASS 8 CHAPTER 3 SQUARES AND ROOTS Exercise 3.2
Exercise 3.2
Question 1
Sol :
(i) 2
(i) 2
(ii) 13
(iii) 27
(iv) 88
(v) 243
Question 2
Sol :
(i) 1
(ii) 4
(iii) 1
(iv) 9
(v) 6
(vi) 5
(vii) 9
(viii) 4
(ix) 0
(x) 6
Question 3
Sol :
(i) 567
567 has '7' in its unit's place. a perfect square
Should have 1,4,5,6,9,0 in it's unit's place.
so 567 is not a perfect square.
(ii) 2453
2453 has '3' in it's unit's place. But a perfect square
should have 0,1,4,5,6,9 in it's unit's place.
So 2453 is not a perfect square.
(iii) 5298
5298 has 8 in it's unit's place. But a perfect square
should have 0,1,4,5,6,9 in it's unit's place.
so 5298 is not a perfect square.
(iv)4692
46292 has 2 in it's unit's place. But a perfect square
Should have 0,1,4,5,6,9 in it's unit's place
so 46292 is not a perfect square.
(v) 74000
74000 has 0 in it's unit's place but it has
odd no.of zero's and 740 is not a perfect square
so 74000 is not a perfect square.
Question 4
Sol :
(i) 573
square of 573 is a odd number because ,If a number has 3 in the units place , then its square and in '9'
(ii) 4096
Square of 4096 is a even number because, If a number has ' 6 ' in the units place, Then its square ends in ' 6 '
(iii) 8267
Square of 8267 is a odd number because, If a number has 7 in the Units place, Then its square ends in ' 9
(iv) 37916
square of 37916 is a even number because if a number has ' 6 ' in the Units place, then it square ends in ' 6 '
Question 5
Sol :
(i) 12 and 13
There are 2 non-square numbers between the squares of
two consecutive numbers n and n+1
∴ natural numbers between 12 and $(12+1)=2 \times 12=24$
hence , there are 24 natural number between $12^{2}$ and $13^{2}$
(ii) 90 and 91
There are 2 non-square numbers between the Squares of two consecutive numbers n and n+1
∴ Natural numbers between 90 and 91=2 \times 90= 180
Hence, There are 180 natural numbers between $90^{2}$ and $91^{2}$
Question 6
Sol :
(i) $1+3+5+7+9+11+13=7^{2}=49$
(i) $1+3+5+7+9+11+13=7^{2}=49$
(ii) $1+3+5+7+9+11+13+15+17+...+29=15^{2}=225$
sum of first 'n' odd numbers = $n^{2}$
Question 7
Sol :
(i) 64
(i) 64
$64-1=63 ; 63-3=60 ; 60-5=55$
$55-7=48: \quad 48-9=39 ; \quad 39-11=28$
$28-13=15 ; \quad 15-15=0$
∴ $64=1+3+5+7+9+11+13+15=8^{2}$
(ii) 121
$121-1=120 ; 120-3=117 ; \quad 117-5=112 ; 112-7=105 ;$
$105-9=96 ; 96-11=85 ; 85-13=72 ; 72-15=57 ;$
$57-17=40 ; 40-19=21 ; \quad 21-21=0$
∴ $121=1+3+5+7+9+11+13+15+17+19+21=11^{2}$
Question 8
Sol :
(i) $19^{2}=361$
"we can express the square of any odd number greater
than 1 as the sum of two consecutive natural numbers."
First number $=\frac{19^{2}-1}{2}=180$
Second number $=\frac{19^{2}+1}{2}=181$
$19^{2}=361=180+181$
(ii) $33^{2}=1089$
First number $=\frac{33^{2}-1}{2}=544$
Second number $=\frac{33^{2}+1}{2}=545$
$33^{2}=1089=544+545$
(iii) $47^{2}=2209$
First number $=\frac{47^{2}-1}{2}=1104$
Second number $=\frac{47^{2}+1}{2}=1105$
$47^{2}=2209=1104+1105$
Question 9
Sol :
(i) $31^{2}=(30+1)^{2}=(30+1)(30+1)$
$=30(30+1)+1(30+1)$
$=900+30+30+1$
$31^{2}=961$
(ii) $42^{2}=(40+2)^{2}=(40+2)(40+2)$
$=40(40+2)+2(40+2)$
$=1600+80+80+4$
$42^{2}=1764$
(iii) $86^{2}=(80+6)^{2}=(80+6)(80+6)$
$=80(80+6)+6(80+6)$
$=6400+480+480+36$
$86^{2}=7396$
(iv) $94^{2}=(90+4)^{2}=(90+4)(90+4)$
$=90(90+4)+4(90+4)$
$=8100+360+360+16$
$94^{2}=8836$
Question 10
Sol :
(i) 45
Comparing with a5 where a = 4
$4^{-1}(a 5)^{2}=a(a+1)$ hundreds +25
$45^{r}=4(4+1)$ hundreds +25
$=20$ hundreds +25
$45^{2}=2025$
(ii) 305
Comparing with a5 where a =30
$\left(a_{5}\right)^{2}=a(a+1)$ hundreds +25
$(305)^{2}=30(30+1)$ hundreds +25
⇒930 hundred +25
$(305)^{2}$= 93025
(iii) 525
Comparing with a5 where a = 52
$(a 5)^{2}=a(a+1)$ hundreds +25
$(525)^{2}=52(52+1)$ hundreds +25
⇒ 2756 hundreds +25
⇒$(525)^{2}=275625$
Question 11
Sol :
(i) 8
Given number = 8
⇒let us assume $m^{2}-1=8$
⇒$m^{2}=9$
⇒m = 3
Remaining two numbers of Pythagorean triplet are
$m^{2}+1,2 m$
$3^{2}+1, 2 \times 3$
10 , 6
The required triplet (6,8,10) with one number
(ii) 15
Given number =15
Let us assume $m^{2}-1=15$
$m^{2}=16$
m = 4
Remaining two numbers of Pythagorean triplet are
$m^{2}+1,2 m$
$16+1 \quad ,2 \times 4$
$17 \quad , 8$
∴ The required triplet (8,15,17) with one number as 15
(iii) 63
Given number 63
Let us assume $m^{2}-1=63$
$m^{2}=64$
m=8
Remaining two numbers of Pythagorean triplet are
$m^{2}+1,2 m$
$8^{2}+1 \quad 2 \times 8$
65-16
∴ We required triplet (16,63,65) with one number '63'
(iv) 80
given number 80
let us assume $m^{2}-1=80 \Rightarrow m^{2}=81$
m=9
Remaining two numbers of Pythagorean triplet are
$m^{2}+1,2 m$
$q^{2}+1,2 \times 9$
82,18
∴ The required triplet (18,80,82) wits one number '80'
Question 12
Sol :
$21^{2}=$ 441
$201^{2}=$ 40401
$2001^{2}=$ 4004001
$20001^{2}=$ 40004001
$200001^{2}=$ 4000400001
Question 14
Sol :
$7^{2}=$ 49
$67^{2}=$ 4489
$667^{2}=$ 444889
$6667^{2}=$ 44448889
$66667^{2}=$ 4444488889
$666667^{2}=$ 444444888889
Comments
Post a Comment