ML AGGARWAL CLASS 8 CHAPTER 3 SQUARES AND ROOTS Exercise 3.4
EXERCISE 3.4
Question 1
Sol :
(i) 2401
Given number 2401
∴√2401=49
(ii) 4489
∴√4489=67
(iii) 106929
∴√106929=327
(iv) given number 167281
∴√53824=232
(vi) given number 213444
∴√213444=462
∴√213444=462
Question 2
Sol :
(i) Given number 81=2 (even)
⇒ The number of digits in its square root = 22=1
(ii) Given number 169=3( odd )
⇒The number of digits in its square root =3+12=2
(iii) Given number 4761=4 (even)
⇒the number of digits in its square root =42=2
(iv) Given number 27889=5 (odd)
⇒ The number of digits in its square root =5+12=3
(v) Given number 525625=6( even )
∴ The number of digits in its square root 62=3
Question 3
Sol :
(i) Given number 51.84
∴√51.84=7.2
(ii) 42.25
$\sqrt{42.25}=6.5
(iii) Given number 18.4041
√18.4041=4.29
(iv) Given number 5.774409
∴√5.774409=2.403
Question 4
Sol :
(i) 645.8
∴√645.8=25.412≈25.41 (correct to 2 decimals )
(ii) 107.45
√107⋅45=10.365≈10.36
(iii)
Given number 5.462
∴√5.462=2.337≈2.34 (corrected to '2 'decimals)
(iv)
Given number 2
√2=1.414≈1.41
(v)
Given number 3
√3=1.732≈1.73 (Corrected to 2 decimals )
Question 5
Sol :
(i) 8411521
=√841√1521=2939
(ii) 8257529=4489529
√8257529=√4489529
√8257529=6723
(iii) 16169441=7225441
√16169441=√7225√441=8521
Question 6
Sol :
(i) Given number 2000
⇒ Hence , the least number that must be subtracted from
2000 so as to make it a perfect square is 64
∴ Required perfect square numbers =2000 - 64
= 1936=442
(ii) Given number 984
⇒ Hence , the least number that must be subtracted
from 984 so as to make it a perfect square is 23
∴ Required perfect square numbers = 984 - 23 = 961 = =312
(iii) Given number 8934
⇒
⇒ Hence, the least number that must be subtracted
from 8934 so as to make it a perfect square in 98
∴ The required Square number 8934-98 = 8836=942
(iv) Given number 11021
⇒
⇒ Hence , the least number that must be subtracted
from 11021 so as to make it a perfect square is 205
The required square number 11021 - 205 = 10816 = 1042
Question 7
Sol :
(i) Given number 1750
⇒
⇒ 1750\rangle(41)2⇒ Remainder =69
⇒(42)2=1764
⇒ ∴ Required number =1764-1750=14
⇒ Hence, the least number that must be added to 1750
So as to make it a perfect square is 14
(ii) Given number 6412
⇒
⇒6412>(80)2
=812=6561
⇒ ∴ Required number =6561−6412=149
⇒ Hence, the least number That must be added to 6412
So as to make it a perfect square is 149
(iii) Given number 6598
⇒ 6598>(81)2
=(82)2=6724
∴ Required number =6(82)2−6598=126
⇒ hence , the minimum number that must be added to 6598 so as to make it a perfect square is 126
(iv) Given number 8000
⇒ 8000>892
⇒902=8100
⇒ ∴ Required number =902−8000=100
⇒ hence , the minimum number that must be added to
8000 so as to make it a perfect square is 100
Question 8
Sol :
Smallest four digit number = 1000
⇒
⇒ 1000>312
⇒ 322 will be next perfect square
⇒ 322=1024
⇒ Hence , 1024 is smallest four digit number which perfect square
Question 9
Sol :
Greatest six digit number = 999999
⇒
⇒ To make 999999 a perfect square , we have to subtract 1998 from 999999
⇒ The required number = 998001
⇒ hence , 998001 is greatest six digit number which is a perfect square
Question 10
Sol :
(i) AB = 14 cm
BC = 48 cm
according to Pythagoras theorem
⇒ AC2=AB2+BC2
⇒142+482
⇒ AC2=2500
⇒ AC=√2500
⇒ AC=50 cm
(ii) AC=37 cm,BC=35cm,AB=?
⇒ According to Pythagoras theorem
⇒ AC2=AB2+BC2
⇒ 372=AB2+352
⇒ 1369=AB2+1225
⇒ AB2=144
⇒ A B=12 cm
Question 11
Sol :
Total plants = 1400
let no . of rows = x
no. of columns = x
⇒
x2=1400
1400>(37)2
382=1444
So To make 1400 a perfect square, we have add
minimum of 44
∴44 plants needed more.
Question 12
⇒ Total no of students = 1000
⇒ let no of row = no of columns = x
⇒ Total students rows x columns = 1000
⇒
⇒ x×x=1000
x2=1000
x=√1000
So Remainder =39
⇒ hence 39 children will be left out
Question 13
Sol :
⇒ Distance that amit walk while returning
⇒ AC
In △ABC
⇒ According to Pythagoras theorem
⇒ AC=AB2+BC2
⇒AC2=162+632
⇒AC2=4225
⇒AC=65 m
ஃ Hence amit walks 65 m while returing to his house
⇒ Length of ladder = 6m
height of wall = 4.8m
In △ABC
According Pythagoras theorem
⇒ AC2=ABn+BC2
B2=4⋅82+BC2
BCN=12.96
BC=√12.96
BC=3.6 m
⇒ Hence, Distance between wall and foot of ladder
is 3.6 m
Comments
Post a Comment