ML AGGARWAL CLASS 8 CHAPTER 3 SQUARES AND ROOTS Exercise 3.4

 

EXERCISE 3.4

Question 1

Sol :

(i) 2401
Given number 2401











2401=49


(ii) 4489










4489=67


(iii)  106929














106929=327


(iv) given number 167281














167281=409


(v) given number 53824












213444=462

53824=232


(vi) given number 213444













213444=462

213444=462


Question 2

Sol :

(i) Given number 81=2 (even)
 The number of digits in its square root = 22=1

(ii) Given number 169=3( odd )

⇒The number of digits in its square root =3+12=2


(iii) Given number 4761=4 (even)

⇒the number of digits in its square root =42=2


(iv) Given number 27889=5 (odd)

⇒ The number of digits in its square root =5+12=3


(v) Given number 525625=6( even )

∴ The  number of digits in its square root 62=3


Question 3

Sol :

(i) Given number 51.84











51.84=7.2


(ii) 42.25











$\sqrt{42.25}=6.5


(iii)  Given number 18.4041














18.4041=4.29


(iv) Given number 5.774409 


















5.774409=2.403

Question 4

Sol :

(i) 645.8 




















645.8=25.41225.41 (correct to 2 decimals )


(ii) 107.45




















10745=10.36510.36


(iii) 
Given number 5.462

















5.462=2.3372.34 (corrected to '2 'decimals)


(iv)
Given number 2 

















2=1.4141.41


(v)
Given number 3 

















3=1.7321.73 (Corrected to 2 decimals )


Question 5

Sol :

(i) 8411521










=8411521=2939


(ii)  8257529=4489529













8257529=4489529

8257529=6723


(iii) 16169441=7225441










16169441=7225441=8521

Question 6

Sol :

(i) Given number 2000











⇒ Hence , the least number that must be subtracted from 

2000 so as to make it a perfect square is 64 

∴ Required perfect square numbers =2000 - 64

1936=442


(ii) Given number 984










⇒ Hence , the least number that must be subtracted 
  
from 984 so as to make it a perfect square is 23 

∴ Required perfect square numbers = 984 - 23 = 961 = =312


(iii) Given number 8934











⇒ Hence, the least number that must be subtracted

from 8934 so as to make it a perfect square in 98

∴ The required Square number 8934-98 = 8836=942


(iv) Given number 11021













⇒ Hence , the least number that must be subtracted 

from 11021 so as to make it a perfect square is 205 

 The required square number 11021 - 205 = 10816 = 1042


Question 7 

Sol :

(i) Given number 1750 










⇒ 1750\rangle(41)2 Remainder =69

(42)2=1764

⇒  Required number =1764-1750=14

⇒ Hence, the least number that must be added to 1750

So as to make it a perfect square is 14


(ii) Given number 6412










6412>(80)2

=812=6561

⇒  Required number =65616412=149

⇒ Hence, the least number That must be added to 6412

So as to make it a perfect square is 149


(iii)  Given number 6598










6598>(81)2

=(82)2=6724

Required number =6(82)26598=126

⇒ hence , the minimum number that must be added to 6598 so as to make it a perfect square is 126


(iv) Given number 8000










8000>892

902=8100

⇒  Required number =9028000=100

⇒ hence , the minimum number that must be added to 
 
8000 so as to make it a perfect square is 100


Question 8 

Sol :

Smallest four digit number =  1000 










⇒ 1000>312

⇒ 322 will be next perfect square

⇒ 322=1024

⇒ Hence , 1024 is smallest four digit number which perfect square


Question 9 

Sol :
Greatest six digit number = 999999 














⇒ To make 999999 a perfect square , we have to subtract 1998 from 999999

⇒ The required number = 998001 

⇒ hence , 998001 is greatest six digit number which is a perfect square 


Question 10 

Sol :

(i) AB = 14 cm 

BC = 48 cm
 
according to Pythagoras theorem 

⇒ AC2=AB2+BC2

142+482

⇒ AC2=2500

⇒ AC=2500

⇒ AC=50 cm


(ii) AC=37 cm,BC=35cm,AB=?
 
⇒ According to Pythagoras theorem

⇒ AC2=AB2+BC2

⇒ 372=AB2+352

1369=AB2+1225

AB2=144








⇒ A B=12 cm

Question 11 

Sol :









Total plants = 1400 

let no . of rows = x 

no. of columns = x 

⇒ 

x2=1400

1400>(37)2

382=1444

So To make 1400 a perfect square, we have add

minimum of 44

44 plants needed more.


Question 12

⇒ Total no of students = 1000 

⇒ let no of row = no of columns = x

⇒ Total students rows x columns = 1000











x×x=1000

x2=1000

x=1000

So Remainder =39

⇒ hence 39 children will be left out 


Question 13

Sol :

⇒ 







⇒ Distance that amit walk while returning 

⇒ AC

 In ABC

⇒ According to Pythagoras theorem

AC=AB2+BC2

AC2=162+632

AC2=4225

⇒AC=65 m

ஃ Hence amit walks 65 m while returing to his house


Question 14

Sol: 










⇒ Length of  ladder = 6m 

height of wall = 4.8m

In ABC

According Pythagoras theorem

AC2=ABn+BC2

B2=482+BC2

BCN=12.96

BC=12.96

BC=3.6 m

⇒ Hence, Distance between wall and foot of ladder

is 3.6 m

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2