ML AGGARWAL CLASS 8 CHAPTER 8 Simple and Compound Interest Exercise 8.3
Exercise 8.3
Question 1
Sol :
(i) Given
principal = Rs 15000
Time = 2 year ; n = 2
Rate of interest = 10 %
Amount
$\begin{aligned}(A) &=P\left(1+\frac{R}{100}\right)^{n} \\ &=15000\left(1+\frac{10}{100}\right)^{2} \end{aligned}$
Total Amount (A)=18150
Compound interest C=A-P
=18150-15000
Compound interest =3150
Hence , amount is Rs 18150 and compound interest Rs 2496
(ii) Given
principal (p) = Rs 156250
Time $(n)=1 \frac{1}{2}=3 / 2$
Rate of Interest (R)=8% per annum
Compound half yearly so
So,
$R=\frac{81}{2}=4 \%$ (Half yearly)
n =$\frac{3 / 2}{1 / {2}}=3$
A = $P\left(1+\frac{R}{100}\right)^{n}$
$=156250\left(1+\frac{4}{100}\right)^{3}$
A=Rs 175760
$\begin{aligned} C \cdot I &=A-P \\ &=175760-156250 \\ C . I &=19510 \end{aligned}$
Hence , Total amount Rs 175760 and compound interest is Rs 19510
(iii) Given
P = 100000, Time = 9 months , R = 4 % P.A
Compounded for quarterly means 3 months
R= $\frac{4}{4}$=1% per 3 months
$n=\frac{9 \mathrm{months}}{3 \text { months }}=3$
$\begin{aligned} \text { Amount }(A)^{\circ} &=P\left(1+\frac{R}{100}\right)^{n} \\ &=100000\left(1+\frac{1}{100}\right)^{3} \\ A &=103030.1 \\ C &=A-P \\ &=103030.1-100000 \\ C &=3030.1 \end{aligned}$
Hence , amount Rs 103030.1 and compound interest Rs 3030.1
Question 2
Sol :
Given
principal (p) = Rs 4800
rate of interest (R) = 5% p.a , Time = 2 years
simple interest (S.I) = $\frac{P T R}{100}$
$\begin{aligned} &=\frac{4800 \times 2 \times 5}{100} \\ \text { S.I } &=480 \end{aligned}$
Compounded interest $(c \cdot I)=A-P$
$\begin{aligned} \text { Amount }(A) &=P\left(1+\frac{R}{100}\right)^{n} \\ &=4800\left(1+\frac{5}{100}\right)^{2} \\ A &=5292 \end{aligned}$
$\begin{aligned} \text { Compound interest } C . I &=A-P \\ &=5292-4800 \\ C . I &=492 \end{aligned}$
$\begin{aligned} \text { Difference between C. I .E S.I } &=492-480 \\ &=12 \end{aligned}$
Question 3
Sol :
Principal (P)=23125
Rate interest for first year $\left(R_{1}\right)=4%$
Rate of interest for second year $\left.R_{2}\right)=51$
Rate of interest for Third year $\left(R_{3}\right)=61$
$\begin{aligned} \text { Amount }(A)=& P\left(1+\frac{R_{1}}{100}\right)\left(1+\frac{R_{2}}{100}\right)\left(1+\frac{R_{3}}{100}\right) \\=& 3125\left(1+\frac{4}{100}\right)\left(1+\frac{5}{100}\right)\left(1+\frac{6}{100}\right) \\ A &=73617.25 \\ \text { Compound Interest }(C . I) &=A-P \\ &=3617.25-3125 \\ C . I &=492.25 \end{aligned}$
Question 4
Sol :
Principal =26400
Rate of interest (R)=15% p.a
Time =2 years and 4 months
Amount $(A)=P\left(1+\frac{R}{100}\right)^{n}\left(1+\frac{x \cdot R}{100}\right)$
n=2 ; $x=\frac{4}{12}$ when time infraction
$A=26400\left(1+\frac{15}{100}\right)^{n}\left(\begin{array}{c} \\ \left(1+\frac{\frac{4}{12} \times 15}{100}\right)\end{array}\right.$
A = Rs 36659.7
Hence , kamala has to pay Rs 36659.7 to clear the law
Question 5
Sol :
Principal (P)=218000
Rate of interest (R)=8 %
Time =2 year
Simple interest $SI=\frac{P T R}{100}$
$=\frac{18000 \times 2 \times 8}{100}$
S.I=2880
Compound Interest=A-P
Amount $A=P\left(1+\frac{R}{100}\right)^{n}$
$=18000\left(1+\frac{8}{100}\right)^{2}$
A =Rs 20995.2
$\begin{aligned} \text { Compound interest }(C \cdot I) &=20995.2-18000 \\ &=2995.2 \end{aligned}$
Difference between C . I . and S . I
= 2995.2 - 2880
∴ The extra amount anil has to pay in Rs 115.2
Question 6
Sol :
Given
Principal (P)=75000
Rate of interest =12 % p.a
(i) Compounded annually
Time $=1 \frac{1}{2}$ year
n=1 ; x=1 / 2
$\begin{aligned} \text { Amount }(A) &=P\left(1+\frac{R}{100}\right)^{n}\left(1+\frac{x \cdot R}{100}\right) \\ &=75000\left(1+\frac{12}{100}\right)\left(1+\frac{\frac{1}{2} \times 12}{100}\right) \\ A_{1} &=₹ 89040 \end{aligned}$
(ii) Compounded half - yearly
$n=\frac{3 / 2}{1 / 2}=3$
$A=P\left(1+\frac{R}{100}\right)^{n}$
$=75000\left(1+\frac{12}{100}\right)^{3}$
$A_{2}=105369.6$
Hence , mukesh has to pay more when compounded
half yearly than that of when compounded yearly
Question 7
Sol :
Given
Principal (P)=10000
rate of interest (R)=7 % p.a
(i) Amount received by Aryman at end of 2 years
$\begin{aligned} A &=P\left(1+\frac{R}{100}\right)^{n} \\ &=10000\left(1+\frac{7}{100}\right)^{2} \\ A &=11449 \end{aligned}$
(ii) interest for 3rd year
Amount received at the end of 3rd year
$\begin{aligned} A_{3} &=P\left(1+\frac{R}{100}\right)^{3} \\ &=10000 \times\left(1+\frac{7}{100}\right)^{3} \\ A_{3} &=12250.43 \end{aligned}$
Interest for 3rd year = $A_{3}-A_{2}$
=12250.43-11449
=Rs 801.49
Hence , aryma receives interest for 3rd year is Rs 801.49
Question 8
Sol :
Given
Amount (A)=9261
Time$=3 year : Compounded annually
Rate of interest (R)=5 %. p.a
n= 3
$A=P\left(1+\frac{R}{100}\right)^{n}$
$9261=P\left(1+\frac{5}{100}\right)^{3}$
P=Rs 8000
Hence , the sum of money is Rs 8000
Question 9
Sol :
Given
Amount $(A)=2140608$
Time $=1 \frac{1}{2}$ years
Compounded half-yearly
n=3
Rate of interest = 8% p.a
R = 4 % per half year
$A=P\left(1+\frac{R}{100}\right)^{n}$
$140608=P\left(1+\frac{4}{100}\right)^{3}$
$P=\frac{140608}{1.124}$
P=Rs 125000
Hence the principal amount is Rs 125000
Question 10
Sol :
Given
principal (p) = Rs 2000
Total amount (A)= Rs 2315 . 25
Time = 3 years : n = 3 (Compounded annually)
$A=P\left(1+\frac{R}{100}\right)^{n}$
$2315.25=2000\left(1+\frac{R}{100}\right)^{3}$
$1+\frac{R}{100}=\frac{21}{20}$
$\frac{R}{100}=\frac{1}{20}$
R=5% Per annum.
Hence , rate interest in 5 % per annum
Question 11
Sol :
Given
Principal (P)=₹ 40000
Amount (A)=₹ 46305
Time $=1 \frac{1}{2}$ year
Compounded hall - yearly
n=3
$A=P\left(1+\frac{R}{100}\right)^{n}$
$46305=40000\left(1+\frac{R}{100}\right)^{3}$
$1+\frac{R}{100}=\frac{21}{20}$
R=5 % per half - year
R=10 % Per annum.
Hence , rate of interest 10 % per annum
Question 12
Sol :
Given
Amount (A)=217576
Principal (P)=₹15625
Rate of interest $=4 \times$ p.a
$A=P\left(1+\frac{R}{100}\right)^{n}$
$17576=15625\left(1+\frac{4}{100}\right)^{n .}$
$1.1248=(1.04)^{n}$
Apply 'log' on both sides
$\begin{array}{c}\log _{e}(1.1248)=n \cdot \log _{e}(1.04) \\ n=3\end{array}$
Hence , the required time is 3 years
Question 13
Sol :
Principal =216000
Amount =218522
Rate of interest (R)=10 % p.a
Compounded Semi. annually
R=5 % per half - year
$A=P\left(1+\frac{R}{100}\right)^{n}$
$18522=16000\left(1+\frac{5}{100}\right)^{n}$
$(1 \cdot 05)^{\eta}=1.1576$
Apply 'log' on both sides
$n \cdot \log _{e}(1.05)=\log _{e}(1.1576)$
n=3
$\therefore$ Time $=3 \times \frac{1}{2}=1 \frac{1}{2}$ fran.
ஃ The required time =$1 \frac{1}{2}$ years.
Comments
Post a Comment