ML Aggarwal Solution Class 10 Chapter 5 Quadratic Equations in One Variable Test

Test

Question 1

(i) x² + 6x – 16 = 0

(ii) 3x² + 11x + 10 = 0

Sol :

(i)

x² + 6x – 16 = 0

⇒ x² + 8x – 2x – 16 = 0

⇒ x (x + 8) – 2 (x + 8) = 0

⇒(x+8)(x-2)=0
Either x+8=0, then x=-8
or x-2=0, then x=2
Hence x=-8,2


(ii) 3x2+11x+10=0

3x2+11x+10=0

3x2+6x+5x+10=0

⇒3x(x+2)+5(x+2)=0

⇒ (x+2)(3 x+5)=0

Either x+2=0, then x=-2 

or 3x+5=0, then

3 x=-5 

x=53

Hence x=-2,53


Question 2

(i) 2x2+axa2=0

(ii) 3x2+10x+73=0

Sol :

(i) 2x2+axa2=0

2x2+2axaxa2=0

⇒2x(x+a)-a(x+a)=0

⇒(x+a)(2 x-a)=0

Either x+a=0, then x=a

or 2x-a=0, then

2x=a 

x=a2

Hence x=-a, a2


(ii) 3x2+10x+73=0

3x2+10x+73=0

3x2+3x+7x+73=0

3x(x+3)+7(x+3)=0

(x+3)(3x+7)=0

Either x+3=0, then x=3

or 3x+7=0, then 3x=7

x=73

x=7×33×3=733

Hence x=3,733


Question 3

(i) x(x + 1) + (x + 2)(x + 3) = 42

(ii) 6x2x1=1x2
Sol :
2x2+6x+642=0
2x2+6x36=0
x2+3x18=0
x2+6x3x18=0
⇒x(x+6)-3(x+6)=0
⇒(x+6)(x-3)=0
Either x+6=0, then x=-6
or x-3=0, then x=3 
Hence  x=-6,3 

(ii) 6x2x1=1x2
6x62xx(x1)=1x2
4x6x2x=1x2
(4x6)(x2)=x2x
4x28x6x+12=x2x
4x214x+12x2+x=0
3x213x+12=0
3x29x4x+12=0
⇒3x(x-3)-4(x-3)=0
⇒(x-3)(3 x-4)=0

Either x-3=0, then x=3
or 3x-4=0, then
3x=4 
x=43
Hence x=3, 43

Question 4

(i) x+15=x+3
(ii) 3x22x1=2x2
Sol :
(i) x+15=x+3
Squaring on both sides
x+15=(x+3)2
x+15=x2+6x+9
x2+6x+9x15=0
x2+5x6=0
x2+6xx6=0
⇒ x(x+6)-1(x+6)=0
⇒ (x+6)(x-1)=0
Either x+6=0 then x=-6
or x-1=0, then x=1
∴x=-6,1

Check :
(i) If x=-6 then
L.H.S. =x+15
=6+15=9=3
R.H.S. =x+3=-6+3=-3
∵ L.H.S≠R.H.S.
∴ x=-6 is not a root

(ii) If x=1, then
L.H.S. =x+15
=1+15=16=4
R.H.S. =x+3=1+3=4
∵ L.H.S=R.H.S
∴ x=1 is a root of this equation 
Hence x=1

(ii) 3x22x1=2x2
3x22x1=2x2
Squaring both sides 
3x22x1=(2x2)2
3x22x1=4x28x+4
4x28x+43x2+2x+1=0
x26x+5=0
x25xx+5=0
⇒x(x-5)-1(x-5)=0
⇒(x-5)(x-1)=0
Either x-5=0, then x=5 or x-1=0, then x=1

Check. (i) If x=5,  then

L.H.S. =3x22x1
=3×(5)22×51
=3×25101=75101
=64=8
R.H.S=2x-2=2×5-2
=10-2=8

∵L.H.S=R.H.S
∴x=5 is a root

L.H.S. =3x22x1
=3(1)22(1)1
=3×121=321=0
R.H.S. =2x-2=2×1-2=2-2=0
∴ L.H.S.=R.H.S.
Hence x=5,1

Question 5

(i) 2x² – 3x – 1 = 0
(ii) x(3x+12)=6
Sol :
(i) 2x23x1=0
Here a=2, b=-3, c=-1

D=b24ac=(3)24×2×(1)
=9+8=17
x=b±D2a
=(3)±172×2
=3±174
x=3+174,3174

(ii) x(3x+12)=6
3x2+x2=6

6x2+x=12
6x2+x12=0
Here a=6, b=1, c=-12
D=b24ac=(1)24×6×(12)
=1+288=289
x=b±D2a
=1±2892×6
=1±1712

x1=1+1712=1612=43

x2=11712=1812=32

x=43,32

Question 6

(i) 2x+53x+4=x+1x+3
(ii) 2x+21x+1=4x+43x+3
Sol :
(i) 2x+53x+4=x+1x+3
(2x+5)(x+3)=(x+1)(3x+4)

2x2+6x+5x+15=3x2+4x+3x+4
3x2+7x+42x211x15=0
x24x11=0
Here a=1, b=-4, c=-11
D=b24ac=(4)24×1×(11)
=16+44=60

x=b±D2a

=(4)±602×1=4±4×152
=4±2152=2±15

∴ x=2+15,2÷15

(ii)2x+21x+1=4x+43x+3
2x+21x+1=4x+43x+3
2x+2x2(x+2)(x+1)=4x+123x12(x+4)(x+3)

x(x+2)(x+1)=x(x+4)(x+3)
1(x+2)(x+1)=1(x+4)(x+3) [dividing by x if x≠0]

1x2+3x+2=1x2+7x+12

x2+7x+12x23x2=0
4x+102x+5=0
2x=5x=52

If x=0 , then

0(x+2)(x+1)=0(x+4)(x+3)

Which is correct

Hence x=0,52

Question 7

(i) 3x47+73x4=52,x43
(ii) 4x3=52x+3,x0,32
Sol :
(i) 3x47+73x4=52,x43
let 3x47=y, then

y+1y=52
2y2+2=5y
2y25y+2=0
2y2y4y+2=0
⇒ y(2y-1)-2(2y-1)=0
⇒ (2y-1)(y-2)=0

Either 2y-1=0, then
2y=1 
y=12
or y-2=0, then y=2
When y=12, then
3x47=12
⇒ 6x-8=7
⇒  6x=7+8 
⇒ 6x=15
⇒ x=156=52

y=2 then
3x47=213x4=14

⇒ 3x=14+4=18
x=183=6
x=6,52

(ii) 4x3=52x+3,x0,32
(43x)(2x+3)=5x
8x+126x29x5x=0
6x26x+12=0
x2+x2=0
x2+2xx2=0
⇒ x(x+2)-1(x+2)=0
⇒(x+2)(x-1)=0
Either x+2=0, then x=-2
or x-1=0, then x=1
∴x=1,-2


Question 8

(i)x² + (4 – 3a)x – 12a = 0
(ii)10ax² – 6x + 15ax – 9 = 0,a≠0
Sol :
(i)x² + (4 – 3a)x – 12a = 0
Here a = 1, b = 4 – 3a, c = -12a

d=b24ac
=(43a)24×1×(12a)
=1624a+9a2+48a
=16+24a+9a2=(4+3a)2

x=b±d2 A
=(43a)±(4+3a)22×1
=3a4±3a+42

x1=3a4+3a+42
=6a2=3a
and x2=3a43a42
=82=4

∴Roots are 3a, -4

(ii) 10ax2(615a)x9=0
Here a=10a,b=(615a),c=9
d=b24ac
=[(615a)]24×10a(9)
=36180a+225a2+360a
=36+180a+225a2=(6+15a)2

x=b±d2a
=[(615a)]±(6+15a)22×10a
=(615a)±(6+15a)20a

x1=615a+6+15a20a
=1220a=35a

x2=615a615a20a
=30a20a=32
Hence x=35a,32

Question 9

Solve for x using the quadratic formula. Write your answer correct to two significant figures: (x – 1)² – 3x + 4 = 0. (2014)
Sol :
(x – 1)² – 3x + 4 = 0
x² + 1 – 2x – 3x + 4 = 0

x25x+5=0

Here a=1, b=-5 and c=5
x=(5)±(5)24(1)(5)2
=5±25202=5±52
=5+2.2362 or 52.2362
=7.2362 or 2.7642
=3.618 or 1.382

∴x=3.6, 1.4

Question 10

Discuss the nature of the roots of the following equations:
(i) 3x² – 7x + 8 = 0
(ii) x212x4=0
(iii) 5x265x+9=0
(iv) 3x22x3=0
Sol :
(i) 3x27x+8=0
Here a=3, b=-7, c=8
D=b24ac=(7)24×3×8
=49-96=-47
∵ D<0
∴ Roots are not real

(ii) x212x4=0
Here  a=1,b=12,c=4

D=b24ac=(12)2=4×1×(4)
=14+16=654

∵D>0
∴Roots are real and distinct

(iii) 5x265x+9=0

Here a=5, b=65, c=9

D=b24ac

=(65)24×5×9=180180=0

∴D=0
∴Roots are real and equal

(iv) 3x22x3=0
Here a=3,b=2,c=3
D=b24ac
=(2)24×3×(3)=4+12=16

∵D>0
∴Roots are real and distinct

Question 11

Find the values of k so that the quadratic equation (4 – k) x² + 2 (k + 2) x + (8k + 1) = 0 has equal roots.
Sol :
(4 – k) x² + 2 (k + 2) x + (8k + 1) = 0
Here a = (4 – k), b = 2 (k + 2), c = 8k + 1
D=b24ac
=[2(k+2)]24×(4k)(8k+1)=0
=4(k+2)24(32k+48k2k)
=4(k2+4k+4)4(32k+48k2k)
=4k2+16k+16128k16+32k2+4k
=36k2108k=36k(k3)

∵Roots are equal
∴D=0

⇒36k(k-3)=0
⇒k(k-3)=0
Either k=0

or k – 3 = 0, then k= 3
k = 0, 3


Question 12

Find the values of m so that the quadratic equation 3x² – 5x – 2m = 0 has two distinct real roots.
Sol :
3x² – 5x – 2m = 0
Here a = 3, b = -5, c = -2m
D=b24ac
=(5)24×3×(2m)=25+24m
∵D>0
∴25+24m>0
25m>-25

m>2524


Question 13

Find the value(s) of k for which each of the following quadratic equation has equal roots:
(i)3kx² = 4(kx – 1)
(ii)(k + 4)x² + (k + 1)x + 1 =0
Also, find the roots for that value (s) of k in each case.
Sol :
(i)3kx² = 4(kx – 1)
⇒ 3kx² = 4kx – 4
⇒ 3kx² – 4kx + 4 = 0

Here a=3 k, b=-4 k, c=4
D=b24ac=(4k)24×3k×4
=16k248k

∴Roots are equal
∴D=0

⇒ 16k248k=0
k23k=0
⇒ k(k-3)=0$
Either k=0
or k-3=0 then k=3


x=b±D2a=b2a (∵D=0)

4k2×3k=4×32×3×3=1218=23

x=23,23


(ii)
(k+4)x2+(k+1)x+1=0
Here a=k+4, b=k+1, c=1

D=b24ac=(k+1)24×(k+4)×1
=k2+2k+14k16=k22k15


∵Root are equal

k22k15=0
k25k+3k15=0
⇒k(k-5)+3(k-5)=0
⇒(k-5)(k+3)=0

Either k-5=0, then k=5
or k+3=0, then k=-3

(a) When k=5, then
x=b±D2a=b2a=k12(k+4)=512(5+4)
=618=13

x=13,13

(b) When k=-3, then
x=b±D2a=b2a=k12(k+4)
=(3)12(3+4)=22×1=1

∴ x=1, 1

Question 14

Find two natural numbers which differ by 3 and whose squares have the sum 117.
Sol :
Let first natural number = x
then second natural number = x + 3
According to the condition :
x² + (x + 3)² = 117

x2+x2+6x+9=117
2x2+6x+9117=0
2x2+6x108=0
x2+3x54=0 (dividing by 2)
x2+9x6x54=0

⇒ x(x+9)-6(x+9)=0
⇒ (x+9)(x-6)=0

Either x+9=0, then x=-9, but it is not a natural number.
or x-6=0, then x=6

∴First natural number=6
and second number=6+3=9


Question 15

Divide 16 into two parts such that the twice the square of the larger part exceeds the square of the smaller part by 164.
Sol :
Let larger part = x
then smaller part = 16 – x
(∵ sum = 16)
According to the condition
2x2(16x)2=164

2x2(25632x+x2)=164
2x2256+32xx2=164
x2+32x256164=0
x2+32x420=0
x2+42x10x420=0
⇒ x(x+42)-10(x+42)=0
⇒ (x+42)(x-10)=0

Either x+42=0, then x=-42, but it is not possible
or x-10=0, then x=10

∴Largest part=10
and smaller part=16-10=6


Question 16

Two natural numbers are in the ratio 3 : 4. Find the numbers if the difference between their squares is 175.
Sol :
Ratio in two natural numbers = 3 : 4
Let the numbers be 3x and 4x
According to the condition,
(4x)2(3x)2=175
16x29x2=175
7x2=175
x2=1757=25=(±5)2

∴x=5, -5
But x=-5 is not a natural number
∴x=5
∴Natural numbers are 3x, 4x
=3×5, 4×5=15 ,20

Question 17

Two squares have sides A cm and (x + 4) cm. The sum of their areas is 656 sq. cm.Express this as an algebraic equation and solve it to find the sides of the squares.
Sol :
Side of first square = x cm .
and side of second square = (x + 4) cm
Now according to the condition,
(x)2+(x+4)2=656

x2+x2+8x+16656

2x2+8x+16656=0

2x2+8x640=0

x2+4x320=0 (Dividing by 2)

x2+20x16x320=0

x(x+20)16(x+20)=0

(x+20)(x16)=0


Either x+20=0, then x=-20 , but it not possible as it is negative


or x – 16 = 0 then x = 16

Side of first square = 16 cm

and side of second square = 16 + 4 – 4 = 20 cm



Question 18

The length of a rectangular garden is 12 m more than its breadth. The numerical value of its area is equal to 4 times the numerical value of its perimeter. Find the dimensions of the garden.
Sol :
Let breadth = x m
then length = (x + 12) m
Area = l × b = x (x + 12) m²
and perimeter = 2 (l + b) = 2(x + 12 + x) = 2 (2x + 12) m
According to the condition.
x(x+12)=4 \times 2(2 x+12)
x2+12x=16x+96
x2+12x16x96=0
x24x96=0
x212x+8x96=0
⇒x(x-12)+8(x-12)=0 
⇒(x-12)(x+8)=0

Either x-12=0, then x=12 or x+8=0, then x=-8, but it is not possible as it is in negative.
∴ Breadth =12 m
and length =12+12=24 m

Question 19

A farmer wishes to grow a 100 m² rectangular vegetable garden. Since he has with him only 30 m barbed wire, he fences three sides of the rectangular garden letting compound wall of his house act as the fourth side fence. Find the dimensions of his garden.
Sol :
Area of rectangular garden = 100 cm²
Length of barbed wire = 30 m
Let the length of the side opposite to wall = x
and length of other each side =30x2

According to the condition, 
x(30x)2=100

x(30x)=200
30xx2=200
x230x+200=0
x220x10x+200=0
⇒x(x-20)-10(x-20)=0
⇒(x-20)(x-10)=0

Either x-20=0, then x=20
or x-10=0, then x=10

(i) If x=20 then side opposite to the wall =20m

and other side 30202=102=5 m

(ii) If x=10, then side opposite to wall
and other side e=30102=202
=10 m
∴Sides are 20m, 5, or 10m, 10m

Question 20

The hypotenuse of a right-angled triangle is 1 m less than twice the shortest side. If the third side is 1 m more than the shortest side, find the sides of the triangle.
Sol :
Let the length of shortest side = x m
Length of hypotenuse = 2x – 1
and third side = x + 1
Now according to the condition,
(2x1)2=(x)2+(x+1)2
(By Pythagoras Theorem)

4x24x+1=x2+x2+2x+1

4x24x+12x22x1=0

2x26x=0

x23x=0  (Dividing by 2)

x(x3)=0


Either x=0, but it is not possible
or x-3=0, then x=3

∴Shortest side=3m

Hypotenuse=2×3-1=6-1=5
Third side =x+1=3+1=4
Hence sides are 3.4,5 (in m)

Question 21

A wire ; 112 cm long is bent to form a right angled triangle. If the hypotenuse is 50 cm long, find the area of the triangle.
Sol :
Perimeter of a right angled triangle = 112 cm
Hypotenuse = 50 cm
∴ Sum of other two sides = 112 – 50 = 62 cm
Let the length of first side = x
and length of other side = 62 – x

(x)2+(62x)2=(50)2
(By Pythagoras Theorem)

x2+3844124x+x2=2500
2x2124x+38442500=0
2x2124x+1344=0
x262x+672=0
x248x14x+672=0 (Dividing by 2)
⇒x(x-48) -14(x-48)=0
⇒(x-48)(x-14)=0

Either x-48=0, then x=48
or x-14=0, then x=14

(i) If x=48, then one side=48 cm
and other side=62-48=14 cm

(ii) If x=14, then one side =14 cm
and other side=62-14=48
Hence sides are 14 cm, 48 cm

Question 22

Car A travels x km for every litre of petrol, while car B travels (x + 5) km for every litre of petrol.
(i) Write down the number of litres of petrol used by car A and car B in covering a distance of 400 km.
(ii) If car A uses 4 litres of petrol more than car B in covering 400 km. write down an equation, in A and solve it to determine the number of litres of petrol used by car B for the journey.
Sol :
Distance traveled by car A in one litre = x km
and distance traveled by car B in one litre = (x + 5) km
(i) Consumption of car A in covering 400 km
=400x litres and consumption of car B =400x+5 litres.

(ii) According to the condition. 
400x400x+5=4
400(x+5x)x(x+5)=4
400×5x2+5x=4

2000=4x2+20x
4x2+20x2000=0
x2+5x500=0 (Dividing by 4)$
x2+25x20x500=0
⇒ x(x+25)-20(x+25)=0
⇒ (x+25)(x-20)=0

Either x+25=0, then x=-25, but it is not possible as it is in negative. or x-20=0, then x=20

∴Petrol used by car B=20-4=16 litres

Question 23

The speed of a boat in still water is 11 km/ hr. It can go 12 km up-stream and return downstream to the original point in 2 hours 45 minutes. Find the speed of the stream
Sol :
Speed of a boat in still water = 11 km/hr
Let the speed of stream = x km/hr.
Distance covered = 12 km.
Time taken = 2 hours 45 minutes

=234=114 hours

Now according to the condition
1211x+1211+x=114
12(11+x+11x)(11x)(11+x)=114
12×22121x2=114
133111x2=4×12×22=1056
133111x2=1056
1331105611x2=0
11x2+275=0
x225=0 (Dividing by -11)$
(x+5)(x5)=0

Either x+5=0, then x=-5, but it is not possible as it is negative 
or x-5=0, then x=5
Hence,speed of stream=5 km/hr

Question 24

By selling an article for Rs. 21, a trader loses as much per cent as the cost price of the article. Find the cost price.
Sol :
S.P. of an article = Rs. 21
Let cost price = Rs. x
Then loss = x%

S.P. = C.P. (100 Loss %)100
21=x(100x)100

2100=100xx2
x2100x+2100=0
x230x70x+2100=0
⇒ x(x-30)-70(x-30)=0
⇒ (x-30)(x-70)=0

Either x-30=0, then x=30
or x-70=0, then x=70
∴Cost price=30 or 70

Question 25

A man spent Rs. 2800 on buying a number of plants priced at Rs x each. Because of the number involved, the supplier reduced the price of each plant by Rupee 1.The man finally paid Rs. 2730 and received 10 more plants. Find x.
Sol :
Amount spent = Rs. 2800
Price of each plant = Rs. x
Reduced price = Rs. (x – 1)

No. of plants in first case =2800x

No. of plants received in second case =2800x+10

Amount paid=Rs 2730
According to the condition

(2800x+10)(x1)=2730

(2800+10x)(x1)x=2730
(2800+10x)(x1)=2730x
2800x2800+10x210x=2730x
10x2+2800x10x2730x2800=0
10x2+60x2800=0
x2+6x280=0 (Dividing by 10)
x2+20x14x280=0
⇒x(x+20)-14(x+20)=0
⇒(x+20)(x-14)=0

Either x+20=0, then x=-20
, but it is not possible as it is negative
or x-14=0, then x=14

Question 26

Forty years hence, Mr. Pratap’s age will be the square of what it was 32 years ago. Find his present age.
Sol :
Let Partap’s present age = x years
40 years hence his age = x + 40
and 32 years ago his age = x – 32
According to the condition
x+40=(x32)2

x+40=x264x+1024
x264x+1024x40=0
x265x+984=0
x224x41x+984=0
⇒ x(x-24)-41(x-24)=0
⇒ (x-24)(x-41)=0

Either x-24=0, then x=24 but it is not possible as it is less than 32
or x-41=0, then x=41
Hence present age=41 year

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2