Test
Question 1
(i) x² + 6x – 16 = 0
(ii) 3x² + 11x + 10 = 0
Sol :
(i)
x² + 6x – 16 = 0
⇒ x² + 8x – 2x – 16 = 0
⇒ x (x + 8) – 2 (x + 8) = 0
⇒(x+8)(x-2)=0
Either x+8=0, then x=-8
or x-2=0, then x=2
Hence x=-8,2
(ii) 3x2+11x+10=0
3x2+11x+10=0
⇒3x2+6x+5x+10=0
⇒3x(x+2)+5(x+2)=0
⇒ (x+2)(3 x+5)=0
Either x+2=0, then x=-2
or 3x+5=0, then
3 x=-5
⇒x=−53
Hence x=-2,−53
Question 2
(i) 2x2+ax−a2=0
(ii) √3x2+10x+7√3=0
Sol :
(i) 2x2+ax−a2=0
⇒2x2+2ax−ax−a2=0
⇒2x(x+a)-a(x+a)=0
⇒(x+a)(2 x-a)=0
Either x+a=0, then x=−a
or 2x-a=0, then
2x=a
⇒x=a2
Hence x=-a, a2
(ii) √3x2+10x+7√3=0
√3x2+10x+7√3=0
⇒√3x2+3x+7x+7√3=0
⇒√3x(x+√3)+7(x+√3)=0
⇒(x+√3)(√3x+7)=0
Either x+√3=0, then x=−√3
or √3x+7=0, then √3x=−7
⇒x=−7√3
x=−7×√3√3×√3=−7√33
Hence x=−√3,−7√33
Question 3
(i) x(x + 1) + (x + 2)(x + 3) = 42
(ii) 6x−2x−1=1x−2
Sol :
⇒2x2+6x+6−42=0
⇒2x2+6x−36=0
⇒x2+3x−18=0
⇒x2+6x−3x−18=0
⇒x(x+6)-3(x+6)=0
⇒(x+6)(x-3)=0
Either x+6=0, then x=-6
or x-3=0, then x=3
Hence x=-6,3
(ii)
6x−2x−1=1x−2⇒6x−6−2xx(x−1)=1x−2
⇒4x−6x2−x=1x−2
⇒(4x−6)(x−2)=x2−x
⇒4x2−8x−6x+12=x2−x
⇒4x2−14x+12−x2+x=0
⇒3x2−13x+12=0
⇒3x2−9x−4x+12=0
⇒3x(x-3)-4(x-3)=0
⇒(x-3)(3 x-4)=0
Either x-3=0, then x=3
or 3x-4=0, then
3x=4
⇒x=43
Hence x=3, 43
Question 4
(i) √x+15=x+3
(ii) √3x2−2x−1=2x−2
Sol :
(i) √x+15=x+3
Squaring on both sides
x+15=(x+3)2
⇒x+15=x2+6x+9
⇒x2+6x+9−x−15=0
⇒x2+5x−6=0
⇒x2+6x−x−6=0
⇒ x(x+6)-1(x+6)=0
⇒ (x+6)(x-1)=0
Either x+6=0 then x=-6
or x-1=0, then x=1
∴x=-6,1
Check :
(i) If x=-6 then
L.H.S. =√x+15
=√−6+15=√9=3
R.H.S. =x+3=-6+3=-3
∵ L.H.S≠R.H.S.
∴ x=-6 is not a root
(ii) If x=1, then
L.H.S. =√x+15
=√1+15=√16=4
R.H.S. =x+3=1+3=4
∵ L.H.S=R.H.S
∴ x=1 is a root of this equation
Hence x=1
(ii) √3x2−2x−1=2x−2
√3x2−2x−1=2x−2
Squaring both sides
3x2−2x−1=(2x−2)2
⇒3x2−2x−1=4x2−8x+4
⇒4x2−8x+4−3x2+2x+1=0
⇒x2−6x+5=0
⇒x2−5x−x+5=0
⇒x(x-5)-1(x-5)=0
⇒(x-5)(x-1)=0
Either x-5=0, then x=5 or x-1=0, then x=1
Check. (i) If x=5, then
L.H.S. =√3x2−2x−1
=√3×(5)2−2×5−1
=√3×25−10−1=√75−10−1
=√64=8
R.H.S=2x-2=2×5-2
=10-2=8
∵L.H.S=R.H.S
∴x=5 is a root
L.H.S. =√3x2−2x−1
=√3(1)2−2(1)−1
=√3×1−2−1=√3−2−1=0
R.H.S. =2x-2=2×1-2=2-2=0
∴ L.H.S.=R.H.S.
Hence x=5,1
(ii) x(3x+12)=6
Sol :
(i) 2x2−3x−1=0
Here a=2, b=-3, c=-1
D=b2−4ac=(−3)2−4×2×(−1)
=9+8=17
x=−b±√D2a
=−(−3)±√172×2
=3±√174
∴x=3+√174,3−√174
⇒6x2+x=12
⇒6x2+x−12=0
Here a=6, b=1, c=-12
D=b2−4ac=(1)2−4×6×(−12)
=1+288=289
∴x=−b±√D2a
=−1±√2892×6
=−1±1712
∴x1=−1+1712=1612=43
x2=−1−1712=−1812=−32
∴x=43,−32
(i) 2x+53x+4=x+1x+3
(ii) 2x+2−1x+1=4x+4−3x+3
Sol :
(i) 2x+53x+4=x+1x+3
(2x+5)(x+3)=(x+1)(3x+4)
2x2+6x+5x+15=3x2+4x+3x+4
⇒3x2+7x+4−2x2−11x−15=0
⇒x2−4x−11=0
Here a=1, b=-4, c=-11
D=b2−4ac=(−4)2−4×1×(−11)
=16+44=60
∵x=−b±√D2a
=−(−4)±√602×1=4±√4×152
=4±2√152=2±√15
∴ x=2+√15,2÷√15
(ii)2x+2−1x+1=4x+4−3x+3
2x+2−1x+1=4x+4−3x+3
2x+2−x−2(x+2)(x+1)=4x+12−3x−12(x+4)(x+3)
⇒x(x+2)(x+1)=x(x+4)(x+3)
⇒1(x+2)(x+1)=1(x+4)(x+3) [dividing by x if x≠0]
⇒1x2+3x+2=1x2+7x+12
⇒x2+7x+12−x2−3x−2=0
⇒4x+10⇒2x+5=0
⇒2x=−5⇒x=−52
If x=0 , then
0(x+2)(x+1)=0(x+4)(x+3)
Which is correct
Hence x=0,−52
(i) 3x−47+73x−4=52,x≠43
(ii) 4x−3=52x+3,x≠0,−32
Sol :
(i) 3x−47+73x−4=52,x≠43
let 3x−47=y, then
y+1y=52
⇒2y2+2=5y
⇒2y2−5y+2=0
⇒2y2−y−4y+2=0
⇒ y(2y-1)-2(2y-1)=0
⇒ (2y-1)(y-2)=0
Either 2y-1=0, then
2y=1
⇒y=12
or y-2=0, then y=2
When y=12, then
3x−47=12
⇒ 6x-8=7
⇒ 6x=7+8
⇒ 6x=15
⇒ x=156=52
y=2 then
3x−47=21⇒3x−4=14
⇒ 3x=14+4=18
⇒x=183=6
∴x=6,52
(ii) 4x−3=52x+3,x≠0,−32
⇒(4−3x)(2x+3)=5x
⇒8x+12−6x2−9x−5x=0
⇒−6x2−6x+12=0
⇒x2+x−2=0
⇒x2+2x−x−2=0
⇒ x(x+2)-1(x+2)=0
⇒(x+2)(x-1)=0
Either x+2=0, then x=-2
or x-1=0, then x=1
∴x=1,-2
(i)x² + (4 – 3a)x – 12a = 0
(ii)10ax² – 6x + 15ax – 9 = 0,a≠0
Sol :
(i)x² + (4 – 3a)x – 12a = 0
Here a = 1, b = 4 – 3a, c = -12a
∴d=b2−4ac
=(4−3a)2−4×1×(−12a)
=16−24a+9a2+48a
=16+24a+9a2=(4+3a)2
∴x=−b±√d2 A
=−(4−3a)±√(4+3a)22×1
=3a−4±3a+42
∴x1=3a−4+3a+42
=6a2=3a
and x2=3a−4−3a−42
=−82=−4
∴Roots are 3a, -4
(ii) 10ax2−(6−15a)x−9=0
Here a=10a,b=−(6−15a),c=−9
d=b2−4ac
=[−(6−15a)]2−4×10a(−9)
=36−180a+225a2+360a
=36+180a+225a2=(6+15a)2
∵x=−b±√d2a
=−[−(6−15a)]±√(6+15a)22×10a
=(6−15a)±(6+15a)20a
∵x1=6−15a+6+15a20a
=1220a=35a
x2=6−15a−6−15a20a
=−30a20a=−32
Hence x=35a,−32
Solve for x using the quadratic formula. Write your answer correct to two significant figures: (x – 1)² – 3x + 4 = 0. (2014)
Sol :
(x – 1)² – 3x + 4 = 0
x² + 1 – 2x – 3x + 4 = 0
x2−5x+5=0
Here a=1, b=-5 and c=5
x=−(−5)±√(−5)2−4(1)(5)2
=5±√25−202=5±√52
=5+2.2362 or 5−2.2362
=7.2362 or 2.7642
=3.618 or 1.382
∴x=3.6, 1.4
Discuss the nature of the roots of the following equations:
(i) 3x² – 7x + 8 = 0
(ii) x2−12x−4=0
(iii) 5x2−6√5x+9=0
(iv) √3x2−2x−√3=0
Sol :
(i) 3x2−7x+8=0
Here a=3, b=-7, c=8
∴D=b2−4ac=(−7)2−4×3×8
=49-96=-47
∵ D<0
∴ Roots are not real
(ii) x2−12x−4=0
Here a=1,b=12,c=−4
∴D=b2−4ac=(12)2=4×1×(−4)
=14+16=654
∵D>0
∴Roots are real and distinct
(iii) 5x2−6√5x+9=0
Here a=5, b=−6√5, c=9
∴D=b2−4ac
=(−6√5)2−4×5×9=180−180=0
∴D=0
∴Roots are real and equal
(iv) √3x2−2x−√3=0
Here a=√3,b=−2,c=−√3
∴D=b2−4ac
=(−2)2−4×√3×(−√3)=4+12=16
∵D>0
∴Roots are real and distinct
Find the values of k so that the quadratic equation (4 – k) x² + 2 (k + 2) x + (8k + 1) = 0 has equal roots.
Sol :
(4 – k) x² + 2 (k + 2) x + (8k + 1) = 0
Here a = (4 – k), b = 2 (k + 2), c = 8k + 1
∴D=b2−4ac
=[2(k+2)]2−4×(4−k)(8k+1)=0
=4(k+2)2−4(32k+4−8k2−k)
=4(k2+4k+4)−4(32k+4−8k2−k)
=4k2+16k+16−128k−16+32k2+4k
=36k2−108k=36k(k−3)
∵Roots are equal
∴D=0
⇒36k(k-3)=0
⇒k(k-3)=0
Either k=0
or k – 3 = 0, then k= 3
k = 0, 3
Find the values of m so that the quadratic equation 3x² – 5x – 2m = 0 has two distinct real roots.
Sol :
3x² – 5x – 2m = 0
Here a = 3, b = -5, c = -2m
∴D=b2−4ac
=(−5)2−4×3×(−2m)=25+24m
∵D>0
∴25+24m>0
25m>-25
m>−2524
Find the value(s) of k for which each of the following quadratic equation has equal roots:
(i)3kx² = 4(kx – 1)
(ii)(k + 4)x² + (k + 1)x + 1 =0
Also, find the roots for that value (s) of k in each case.
Sol :
(i)3kx² = 4(kx – 1)
⇒ 3kx² = 4kx – 4
⇒ 3kx² – 4kx + 4 = 0
Here a=3 k, b=-4 k, c=4
∴D=b2−4ac=(−4k)2−4×3k×4
=16k2−48k
∴Roots are equal
∴D=0
⇒ ⇒16k2−48k=0
⇒k2−3k=0
⇒ k(k-3)=0$
Either k=0
or k-3=0 then k=3
∴x=−b±√D2a=−b2a (∵D=0)
4k2×3k=4×32×3×3=1218=23
∴x=23,23
(ii)
(k+4)x2+(k+1)x+1=0
Here a=k+4, b=k+1, c=1
∴D=b2−4ac=(k+1)2−4×(k+4)×1
=k2+2k+1−4k−16=k2−2k−15
∵Root are equal
∵k2−2k−15=0
⇒k2−5k+3k−15=0
⇒k(k-5)+3(k-5)=0
⇒(k-5)(k+3)=0
Either k-5=0, then k=5
or k+3=0, then k=-3
(a) When k=5, then
x=−b±√D2a=−b2a=−k−12(k+4)=−5−12(5+4)
=−618=−13
∴x=−13,−13
(b) When k=-3, then
x=−b±√D2a=−b2a=−k−12(k+4)
=(−3)−12(−3+4)=22×1=1
∴ x=1, 1
Find two natural numbers which differ by 3 and whose squares have the sum 117.
Sol :
Let first natural number = x
then second natural number = x + 3
According to the condition :
x² + (x + 3)² = 117
⇒x2+x2+6x+9=117
⇒2x2+6x+9−117=0
⇒2x2+6x−108=0
⇒x2+3x−54=0 (dividing by 2)
⇒x2+9x−6x−54=0
⇒ x(x+9)-6(x+9)=0
⇒ (x+9)(x-6)=0
Either x+9=0, then x=-9, but it is not a natural number.
or x-6=0, then x=6
∴First natural number=6
and second number=6+3=9
Divide 16 into two parts such that the twice the square of the larger part exceeds the square of the smaller part by 164.
Sol :
Let larger part = x
then smaller part = 16 – x
(∵ sum = 16)
According to the condition
2x2−(16−x)2=164
⇒2x2−(256−32x+x2)=164
⇒2x2−256+32x−x2=164
⇒x2+32x−256−164=0
⇒x2+32x−420=0
⇒x2+42x−10x−420=0
⇒ x(x+42)-10(x+42)=0
⇒ (x+42)(x-10)=0
Either x+42=0, then x=-42, but it is not possible
or x-10=0, then x=10
∴Largest part=10
and smaller part=16-10=6
Two natural numbers are in the ratio 3 : 4. Find the numbers if the difference between their squares is 175.
Sol :
Ratio in two natural numbers = 3 : 4
Let the numbers be 3x and 4x
According to the condition,
(4x)2−(3x)2=175
⇒16x2−9x2=175
⇒7x2=175
⇒x2=1757=25=(±5)2
∴x=5, -5
But x=-5 is not a natural number
∴x=5
∴Natural numbers are 3x, 4x
=3×5, 4×5=15 ,20
Two squares have sides A cm and (x + 4) cm. The sum of their areas is 656 sq. cm.Express this as an algebraic equation and solve it to find the sides of the squares.
Sol :
Side of first square = x cm .
and side of second square = (x + 4) cm
Now according to the condition,
(x)2+(x+4)2=656
⇒x2+x2+8x+16−656
⇒2x2+8x+16−656=0
⇒2x2+8x−640=0
⇒x2+4x−320=0 (Dividing by 2)
⇒x2+20x−16x−320=0
⇒x(x+20)−16(x+20)=0
⇒(x+20)(x−16)=0
Either x+20=0, then x=-20 , but it not possible as it is negative
or x – 16 = 0 then x = 16
Side of first square = 16 cm
and side of second square = 16 + 4 – 4 = 20 cm
The length of a rectangular garden is 12 m more than its breadth. The numerical value of its area is equal to 4 times the numerical value of its perimeter. Find the dimensions of the garden.
Sol :
Let breadth = x m
then length = (x + 12) m
Area = l × b = x (x + 12) m²
and perimeter = 2 (l + b) = 2(x + 12 + x) = 2 (2x + 12) m
According to the condition.
x(x+12)=4 \times 2(2 x+12)
⇒x2+12x=16x+96
⇒x2+12x−16x−96=0
⇒x2−4x−96=0
⇒x2−12x+8x−96=0
⇒x(x-12)+8(x-12)=0
⇒(x-12)(x+8)=0
Either x-12=0, then x=12 or x+8=0, then x=-8, but it is not possible as it is in negative.
∴ Breadth =12 m
and length =12+12=24 m
A farmer wishes to grow a 100 m² rectangular vegetable garden. Since he has with him only 30 m barbed wire, he fences three sides of the rectangular garden letting compound wall of his house act as the fourth side fence. Find the dimensions of his garden.
Sol :
Area of rectangular garden = 100 cm²
Length of barbed wire = 30 m
Let the length of the side opposite to wall = x
and length of other each side =30−x2
According to the condition,
x(30−x)2=100
⇒x(30−x)=200
⇒30x−x2=200
⇒x2−30x+200=0
⇒x2−20x−10x+200=0
⇒x(x-20)-10(x-20)=0
⇒(x-20)(x-10)=0
Either x-20=0, then x=20
or x-10=0, then x=10
(i) If x=20 then side opposite to the wall =20m
and other side 30−202=102=5 m
(ii) If x=10, then side opposite to wall
and other side e=30−102=202
=10 m
∴Sides are 20m, 5, or 10m, 10m
The hypotenuse of a right-angled triangle is 1 m less than twice the shortest side. If the third side is 1 m more than the shortest side, find the sides of the triangle.
Sol :
Let the length of shortest side = x m
Length of hypotenuse = 2x – 1
and third side = x + 1
Now according to the condition,
(2x−1)2=(x)2+(x+1)2
(By Pythagoras Theorem)
⇒4x2−4x+1=x2+x2+2x+1
⇒4x2−4x+1−2x2−2x−1=0
⇒2x2−6x=0
⇒x2−3x=0 (Dividing by 2)
⇒x(x−3)=0
Either x=0, but it is not possible
or x-3=0, then x=3
∴Shortest side=3m
Hypotenuse=2×3-1=6-1=5
Third side =x+1=3+1=4
Hence sides are 3.4,5 (in m)
A wire ; 112 cm long is bent to form a right angled triangle. If the hypotenuse is 50 cm long, find the area of the triangle.
Sol :
Perimeter of a right angled triangle = 112 cm
Hypotenuse = 50 cm
∴ Sum of other two sides = 112 – 50 = 62 cm
Let the length of first side = x
and length of other side = 62 – x
(x)2+(62−x)2=(50)2
(By Pythagoras Theorem)
⇒x2+3844−124x+x2=2500
⇒2x2−124x+3844−2500=0
⇒2x2−124x+1344=0
⇒x2−62x+672=0
⇒x2−48x−14x+672=0 (Dividing by 2)
⇒x(x-48) -14(x-48)=0
⇒(x-48)(x-14)=0
Either x-48=0, then x=48
or x-14=0, then x=14
(i) If x=48, then one side=48 cm
and other side=62-48=14 cm
(ii) If x=14, then one side =14 cm
and other side=62-14=48
Hence sides are 14 cm, 48 cm
Car A travels x km for every litre of petrol, while car B travels (x + 5) km for every litre of petrol.
(i) Write down the number of litres of petrol used by car A and car B in covering a distance of 400 km.
(ii) If car A uses 4 litres of petrol more than car B in covering 400 km. write down an equation, in A and solve it to determine the number of litres of petrol used by car B for the journey.
Sol :
Distance traveled by car A in one litre = x km
and distance traveled by car B in one litre = (x + 5) km
(i) Consumption of car A in covering 400 km
=400x litres and consumption of car B =400x+5 litres.
(ii) According to the condition.
400x−400x+5=4
400(x+5−x)x(x+5)=4
⇒400×5x2+5x=4
⇒2000=4x2+20x
⇒4x2+20x−2000=0
⇒x2+5x−500=0 (Dividing by 4)$
⇒x2+25x−20x−500=0
⇒ x(x+25)-20(x+25)=0
⇒ (x+25)(x-20)=0
Either x+25=0, then x=-25, but it is not possible as it is in negative. or x-20=0, then x=20
∴Petrol used by car B=20-4=16 litres
The speed of a boat in still water is 11 km/ hr. It can go 12 km up-stream and return downstream to the original point in 2 hours 45 minutes. Find the speed of the stream
Sol :
Speed of a boat in still water = 11 km/hr
Let the speed of stream = x km/hr.
Distance covered = 12 km.
Time taken = 2 hours 45 minutes
=234=114 hours
Now according to the condition
1211−x+1211+x=114
⇒12(11+x+11−x)(11−x)(11+x)=114
⇒12×22121−x2=114
⇒1331−11x2=4×12×22=1056
⇒1331−11x2=1056
⇒1331−1056−11x2=0
⇒−11x2+275=0
⇒x2−25=0 (Dividing by -11)$
⇒(x+5)(x−5)=0
Either x+5=0, then x=-5, but it is not possible as it is negative
or x-5=0, then x=5
Hence,speed of stream=5 km/hr
By selling an article for Rs. 21, a trader loses as much per cent as the cost price of the article. Find the cost price.
Sol :
S.P. of an article = Rs. 21
Let cost price = Rs. x
Then loss = x%
∴ S.P. = C.P. (100− Loss %)100
21=x(100−x)100
2100=100x−x2
⇒x2−100x+2100=0
⇒x2−30x−70x+2100=0
⇒ x(x-30)-70(x-30)=0
⇒ (x-30)(x-70)=0
Either x-30=0, then x=30
or x-70=0, then x=70
∴Cost price=30 or 70
A man spent Rs. 2800 on buying a number of plants priced at Rs x each. Because of the number involved, the supplier reduced the price of each plant by Rupee 1.The man finally paid Rs. 2730 and received 10 more plants. Find x.
Sol :
Amount spent = Rs. 2800
Price of each plant = Rs. x
Reduced price = Rs. (x – 1)
No. of plants in first case =2800x
No. of plants received in second case =2800x+10
Amount paid=Rs 2730
According to the condition
(2800x+10)(x−1)=2730
⇒(2800+10x)(x−1)x=2730
⇒(2800+10x)(x−1)=2730x
⇒2800x−2800+10x2−10x=2730x
⇒10x2+2800x−10x−2730x−2800=0
⇒10x2+60x−2800=0
⇒x2+6x−280=0 (Dividing by 10)
⇒x2+20x−14x−280=0
⇒x(x+20)-14(x+20)=0
⇒(x+20)(x-14)=0
Either x+20=0, then x=-20
, but it is not possible as it is negative
or x-14=0, then x=14
Forty years hence, Mr. Pratap’s age will be the square of what it was 32 years ago. Find his present age.
Sol :
Let Partap’s present age = x years
40 years hence his age = x + 40
and 32 years ago his age = x – 32
According to the condition
x+40=(x−32)2
⇒x+40=x2−64x+1024
⇒x2−64x+1024−x−40=0
⇒x2−65x+984=0
⇒x2−24x−41x+984=0
⇒ x(x-24)-41(x-24)=0
⇒ (x-24)(x-41)=0
Either x-24=0, then x=24 but it is not possible as it is less than 32
or x-41=0, then x=41
Hence present age=41 year
Comments
Post a Comment