Test
Question 1
(i) x² + 6x – 16 = 0
(ii) 3x² + 11x + 10 = 0
Sol :
(i)
x² + 6x – 16 = 0
⇒ x² + 8x – 2x – 16 = 0
⇒ x (x + 8) – 2 (x + 8) = 0
⇒(x+8)(x-2)=0
Either x+8=0, then x=-8
or x-2=0, then x=2
Hence x=-8,2
(ii) $3 x^{2}+11 x+10=0$
$3 x^{2}+11 x+10=0$
$\Rightarrow 3 x^{2}+6 x+5 x+10=0$
⇒3x(x+2)+5(x+2)=0
⇒ (x+2)(3 x+5)=0
Either x+2=0, then x=-2
or 3x+5=0, then
3 x=-5
⇒$x=\frac{-5}{3}$
Hence x=-2,$ \frac{-5}{3}$
Question 2
(i) $2 x^{2}+a x-a^{2}=0$
(ii) $\sqrt{3 x^{2}+10 x+7 \sqrt{3}=0}$
Sol :
(i) $2 x^{2}+a x-a^{2}=0$
$\Rightarrow 2 x^{2}+2 a x-a x-a^{2}=0$
⇒2x(x+a)-a(x+a)=0
⇒(x+a)(2 x-a)=0
Either $x+a=0,$ then $x=-a$
or 2x-a=0, then
2x=a
$\Rightarrow x=\frac{a}{2}$
Hence x=-a, $\frac{a}{2}$
(ii) $\sqrt{3} x^{2}+10 x+7 \sqrt{3}=0$
$\sqrt{3} x^{2}+10 x+7 \sqrt{3}=0$
$\Rightarrow \quad \sqrt{3} x^{2}+3 x+7 x+7 \sqrt{3}=0$
$\Rightarrow \quad \sqrt{3} x(x+\sqrt{3})+7(x+\sqrt{3})=0$
$\Rightarrow \quad(x+\sqrt{3})(\sqrt{3} x+7)=0$
Either $x+\sqrt{3}=0,$ then $x=-\sqrt{3}$
or $\sqrt{3} x+7=0,$ then $\sqrt{3} x=-7$
$\Rightarrow x=\frac{-7}{\sqrt{3}}$
$x=\frac{-7 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{-7 \sqrt{3}}{3}$
Hence $x=-\sqrt{3}, \frac{-7 \sqrt{3}}{3}$
Question 3
(i) x(x + 1) + (x + 2)(x + 3) = 42
(ii) $\frac{6}{x}-\frac{2}{x-1}=\frac{1}{x-2}$
Sol :
$\Rightarrow 2 x^{2}+6 x+6-42=0 $
$ \Rightarrow 2 x^{2}+6 x-36=0 $
$\Rightarrow x^{2}+3 x-18=0 $
$\Rightarrow x^{2}+6 x-3 x-18=0$
⇒x(x+6)-3(x+6)=0
⇒(x+6)(x-3)=0
Either x+6=0, then x=-6
or x-3=0, then x=3
Hence x=-6,3
(ii) $\frac{6}{x}-\frac{2}{x-1}=\frac{1}{x-2}$
$\Rightarrow \quad \frac{6 x-6-2 x}{x(x-1)}=\frac{1}{x-2}$
$\Rightarrow \quad \frac{4 x-6}{x^{2}-x}=\frac{1}{x-2}$
$\Rightarrow \quad(4 x-6)(x-2)=x^{2}-x$
$\Rightarrow \quad 4 x^{2}-8 x-6 x+12=x^{2}-x$
$\Rightarrow \quad 4 x^{2}-14 x+12-x^{2}+x=0$
$\Rightarrow \quad 3 x^{2}-13 x+12=0$
$\Rightarrow \quad 3 x^{2}-9 x-4 x+12=0$
⇒3x(x-3)-4(x-3)=0
⇒(x-3)(3 x-4)=0
Either x-3=0, then x=3
or 3x-4=0, then
3x=4
$\Rightarrow x=\frac{4}{3}$
Hence x=3, $\frac{4}{3}$
Question 4
(i) $\sqrt{x+15}=x+3$
(ii) $\sqrt{3 x^{2}-2 x-1}=2 x-2$
Sol :
(i) $\sqrt{x+15}=x+3$
Squaring on both sides
$x+15=(x+3)^{2}$
$\Rightarrow x+15=x^{2}+6 x+9$
$\Rightarrow \quad x^{2}+6 x+9-x-15=0$
$\Rightarrow \quad x^{2}+5 x-6=0$
$\Rightarrow \quad x^{2}+6 x-x-6=0$
⇒ x(x+6)-1(x+6)=0
⇒ (x+6)(x-1)=0
Either x+6=0 then x=-6
or x-1=0, then x=1
∴x=-6,1
Check :
(i) If x=-6 then
L.H.S. $=\sqrt{x+15}$
$=\sqrt{-6+15}=\sqrt{9}=3$
R.H.S. =x+3=-6+3=-3
∵ L.H.S≠R.H.S.
∴ x=-6 is not a root
(ii) If x=1, then
L.H.S. $=\sqrt{x+15}$
$=\sqrt{1+15}=\sqrt{16}=4$
R.H.S. =x+3=1+3=4
∵ L.H.S=R.H.S
∴ x=1 is a root of this equation
Hence x=1
(ii) $\sqrt{3 x^{2}-2 x-1}=2 x-2$
$\sqrt{3 x^{2}-2 x-1}=2 x-2$
Squaring both sides
$3x^{2}-2 x-1=(2 x-2)^{2}$
$\Rightarrow \quad 3x^{2}-2 x-1=4 x^{2}-8 x+4$
$\Rightarrow \quad 4 x^{2}-8 x+4-3 x^{2}+2 x+1=0$
$\Rightarrow \quad x^{2}-6 x+5=0$
$\Rightarrow \quad x^{2}-5 x-x+5=0$
⇒x(x-5)-1(x-5)=0
⇒(x-5)(x-1)=0
Either x-5=0, then x=5 or x-1=0, then x=1
Check. (i) If x=5, then
L.H.S. $=\sqrt{3 x^{2}-2 x-1}$
$=\sqrt{3 \times(5)^{2}-2 \times 5-1}$
$=\sqrt{3 \times 25-10-1}=\sqrt{75-10-1}$
$=\sqrt{64}=8$
R.H.S=2x-2=2×5-2
=10-2=8
∵L.H.S=R.H.S
∴x=5 is a root
L.H.S. $=\sqrt{3 x^{2}-2 x-1}$
$=\sqrt{3(1)^{2}-2(1)-1}$
$=\sqrt{3 \times 1-2-1}=\sqrt{3-2-1}=0$
R.H.S. =2x-2=2×1-2=2-2=0
∴ L.H.S.=R.H.S.
Hence x=5,1
(ii) $x\left(3 x+\frac{1}{2}\right)=6$
Sol :
(i) $2x^{2}-3 x-1=0$
Here a=2, b=-3, c=-1
$\mathrm{D}=b^{2}-4 a c=(-3)^{2}-4 \times 2 \times(-1)$
=9+8=17
$x=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}$
$=\frac{-(-3) \pm \sqrt{17}}{2 \times 2}$
$=\frac{3 \pm \sqrt{17}}{4}$
$\therefore x=\frac{3+\sqrt{17}}{4}, \frac{3-\sqrt{17}}{4}$
(ii) $x\left(3 x+\frac{1}{2}\right)=6$
$3 x^{2}+\frac{x}{2}=6$
$\Rightarrow 6 x^{2}+x=12$
$\Rightarrow 6 x^{2}+x-12=0$
Here a=6, b=1, c=-12
$D=b^{2}-4 a c=(1)^{2}-4 \times 6 \times(-12)$
=1+288=289
$\therefore x=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}$
$=\frac{-1 \pm \sqrt{289}}{2 \times 6}$
$=\frac{-1 \pm 17}{12}$
∴$x_{1}=\frac{-1+17}{12}=\frac{16}{12}=\frac{4}{3}$
$x_{2}=\frac{-1-17}{12}=\frac{-18}{12}=-\frac{3}{2}$
∴$x=\frac{4}{3},-\frac{3}{2}$
(i) $\frac{2 x+5}{3 x+4}=\frac{x+1}{x+3}$
(ii) $\frac{2}{x+2}-\frac{1}{x+1}=\frac{4}{x+4}-\frac{3}{x+3}$
Sol :
(i) $\frac{2 x+5}{3 x+4}=\frac{x+1}{x+3}$
$(2 x+5)(x+3)=(x+1)(3 x+4)$
$2 x^{2}+6 x+5 x+15=3 x^{2}+4 x+3 x+4$
$\Rightarrow \quad 3 x^{2}+7 x+4-2 x^{2}-11 x-15=0$
$\Rightarrow \quad x^{2}-4 x-11=0$
Here a=1, b=-4, c=-11
$\mathrm{D}=b^{2}-4 a c=(-4)^{2}-4 \times 1 \times(-11)$
=16+44=60
∵$x=\frac{-b \pm \sqrt{D}}{2 a}$
$=\frac{-(-4) \pm \sqrt{60}}{2 \times 1}=\frac{4 \pm \sqrt{4 \times 15}}{2}$
$=\frac{4 \pm 2 \sqrt{15}}{2}=2 \pm \sqrt{15}$
∴ $x=2+\sqrt{15}, 2 \div \sqrt{15}$
(ii)$\frac{2}{x+2}-\frac{1}{x+1}=\frac{4}{x+4}-\frac{3}{x+3}$
$\frac{2}{x+2}-\frac{1}{x+1}=\frac{4}{x+4}-\frac{3}{x+3}$
$\frac{2 x+2-x-2}{(x+2)(x+1)}=\frac{4 x+12-3 x-12}{(x+4)(x+3)}$
$\Rightarrow \quad \frac{x}{(x+2)(x+1)}=\frac{x}{(x+4)(x+3)}$
$\Rightarrow \quad \frac{1}{(x+2)(x+1)}=\frac{1}{(x+4)(x+3)}$ [dividing by x if x≠0]
$\Rightarrow \quad \frac{1}{x^{2}+3 x+2}=\frac{1}{x^{2}+7 x+12}$
$\Rightarrow \quad x^{2}+7 x+12-x^{2}-3 x-2=0$
$\Rightarrow \quad 4 x+10 \Rightarrow 2 x+5=0$
$\Rightarrow \quad 2 x=-5 \Rightarrow x=\frac{-5}{2}$
If x=0 , then
$\frac{0}{(x+2)(x+1)}=\frac{0}{(x+4)(x+3)}$
Which is correct
Hence $x=0, \frac{-5}{2}$
(i) $\frac{3 x-4}{7}+\frac{7}{3 x-4}=\frac{5}{2}, x \neq \frac{4}{3}$
(ii) $\frac{4}{x}-3=\frac{5}{2 x+3}, x \neq 0,-\frac{3}{2}$
Sol :
(i) $\frac{3 x-4}{7}+\frac{7}{3 x-4}=\frac{5}{2}, x \neq \frac{4}{3}$
let $\frac{3 x-4}{7}=y,$ then
$y+\frac{1}{y}=\frac{5}{2}$
$ \Rightarrow 2 y^{2}+2=5 y$
$\Rightarrow 2 y^{2}-5 y+2=0$
$\Rightarrow 2 y^{2}-y-4 y+2=0$
⇒ y(2y-1)-2(2y-1)=0
⇒ (2y-1)(y-2)=0
Either 2y-1=0, then
2y=1
$\Rightarrow y=\frac{1}{2}$
or y-2=0, then y=2
When $y=\frac{1}{2},$ then
$\frac{3 x-4}{7}=\frac{1}{2} $
⇒ 6x-8=7
⇒ 6x=7+8
⇒ 6x=15
⇒ $x=\frac{15}{6}=\frac{5}{2}$
y=2 then
$\frac{3 x-4}{7}=\frac{2}{1} \Rightarrow 3 x-4=14$
⇒ 3x=14+4=18
$\Rightarrow x=\frac{18}{3}=6$
$\therefore x=6, \frac{5}{2}$
(ii) $\frac{4}{x}-3=\frac{5}{2 x+3}, x \neq 0,-\frac{3}{2}$
$\Rightarrow(4-3 x)(2 x+3)=5 x$
$\Rightarrow 8x+12-6 x^{2}-9 x-5 x=0$
$\Rightarrow-6 x^{2}-6 x+12=0$
$\Rightarrow x^{2}+x-2=0$
$\Rightarrow x^{2}+2 x-x-2=0$
⇒ x(x+2)-1(x+2)=0
⇒(x+2)(x-1)=0
Either x+2=0, then x=-2
or x-1=0, then x=1
∴x=1,-2
(i)x² + (4 – 3a)x – 12a = 0
(ii)10ax² – 6x + 15ax – 9 = 0,a≠0
Sol :
(i)x² + (4 – 3a)x – 12a = 0
Here a = 1, b = 4 – 3a, c = -12a
$\therefore d=b^{2}-4 a c$
$\quad=(4-3 a)^{2}-4 \times 1 \times(-12 a)$
$\quad=16-24 a+9 a^{2}+48 a$
$\quad=16+24 a+9 a^{2}=(4+3 a)^{2}$
$\therefore \quad x=\frac{-b \pm \sqrt{d}}{2 \mathrm{~A}}$
$=\frac{-(4-3 a) \pm \sqrt{(4+3 a)^{2}}}{2 \times 1}$
$=\frac{3 a-4 \pm 3 a+4}{2}$
$\therefore x_{1}=\frac{3 a-4+3 a+4}{2}$
$=\frac{6 a}{2}=3 a$
and $x_{2}=\frac{3 a-4-3 a-4}{2}$
$=\frac{-8}{2}=-4$
∴Roots are 3a, -4
(ii) $10 a x^{2}-(6-15 a) x-9=0$
Here $a=10 a, b=-(6-15 a), c=-9$
$d=b^{2}-4 a c$
$=[-(6-15 a)]^{2}-4 \times 10 a(-9)$
$=36-180 a+225 a^{2}+360 a$
$=36+180 a+225 a^{2}=(6+15 a)^{2}$
∵$x=\frac{-b \pm \sqrt{d}}{2 a}$
$=\frac{-[-(6-15 a)] \pm \sqrt{(6+15 a)^{2}}}{2 \times 10 a}$
$=\frac{(6-15 a) \pm(6+15 a)}{20 a}$
∵$x_{1}=\frac{6-15 a+6+15 a}{20 a}$
$=\frac{12}{20 a}=\frac{3}{5 a}$
$x_{2}=\frac{6-15 a-6-15 a}{20 a}$
$=\frac{-30 a}{20 a}=\frac{-3}{2}$
Hence $x=\frac{3}{5 a}, \frac{-3}{2}$
Solve for x using the quadratic formula. Write your answer correct to two significant figures: (x – 1)² – 3x + 4 = 0. (2014)
Sol :
(x – 1)² – 3x + 4 = 0
x² + 1 – 2x – 3x + 4 = 0
$x^{2}-5 x+5=0$
Here a=1, b=-5 and c=5
$x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(5)}}{2}$
$=\frac{5 \pm \sqrt{25-20}}{2}=\frac{5 \pm \sqrt{5}}{2}$
$=\frac{5+2.236}{2}$ or $\frac{5-2.236}{2}$
$=\frac{7.236}{2}$ or $\frac{2.764}{2}$
=3.618 or 1.382
∴x=3.6, 1.4
Discuss the nature of the roots of the following equations:
(i) 3x² – 7x + 8 = 0
(ii) $x^{2}-\frac{1}{2} x-4=0$
(iii) $5 x^{2}-6 \sqrt{5} x+9=0$
(iv) $\sqrt{3} x^{2}-2 x-\sqrt{3}=0$
Sol :
(i) $3 x^{2}-7 x+8=0$
Here a=3, b=-7, c=8
$\therefore D=b^{2}-4 a c=(-7)^{2}-4 \times 3 \times 8$
=49-96=-47
∵ D<0
∴ Roots are not real
(ii) $x^{2}-\frac{1}{2} x-4=0$
Here $a=1, b=\frac{1}{2}, c=-4$
$\therefore \mathrm{D}=b^{2}-4 a c=\left(\frac{1}{2}\right)^{2}=4 \times 1 \times(-4)$
$=\frac{1}{4}+16=\frac{65}{4}$
∵D>0
∴Roots are real and distinct
(iii) $5 x^{2}-6 \sqrt{5} x+9=0$
Here a=5, $b=-6 \sqrt{5}$, c=9
∴$\mathrm{D}=b^{2}-4 a c$
$=(-6 \sqrt{5})^{2}-4 \times 5 \times 9=180-180=0$
∴D=0
∴Roots are real and equal
(iv) $\sqrt{3} x^{2}-2 x-\sqrt{3}=0$
Here $a=\sqrt{3}, b=-2, c=-\sqrt{3}$
∴$D=b^{2}-4 a c$
$=(-2)^{2}-4 \times \sqrt{3} \times(-\sqrt{3})=4+12=16$
∵D>0
∴Roots are real and distinct
Find the values of k so that the quadratic equation (4 – k) x² + 2 (k + 2) x + (8k + 1) = 0 has equal roots.
Sol :
(4 – k) x² + 2 (k + 2) x + (8k + 1) = 0
Here a = (4 – k), b = 2 (k + 2), c = 8k + 1
$\therefore \mathrm{D}=b^{2}-4 a c$
$=[2(k+2)]^{2}-4 \times(4-k)(8 k+1)=0$
$=4(k+2)^{2}-4\left(32 k+4-8 k^{2}-k\right)$
$=4\left(k^{2}+4 k+4\right)-4\left(32 k+4-8 k^{2}-k\right)$
$=4 k^{2}+16 k+16-128 k-16+32 k^{2}+4 k$
$=36 k^{2}-108 k=36 k(k-3)$
∵Roots are equal
∴D=0
⇒36k(k-3)=0
⇒k(k-3)=0
Either k=0
or k – 3 = 0, then k= 3
k = 0, 3
Find the values of m so that the quadratic equation 3x² – 5x – 2m = 0 has two distinct real roots.
Sol :
3x² – 5x – 2m = 0
Here a = 3, b = -5, c = -2m
∴$\mathrm{D}=b^{2}-4 a c$
$=(-5)^{2}-4 \times 3 \times(-2 m)=25+24 m$
∵D>0
∴25+24m>0
25m>-25
$m>-\frac{25}{24}$
Find the value(s) of k for which each of the following quadratic equation has equal roots:
(i)3kx² = 4(kx – 1)
(ii)(k + 4)x² + (k + 1)x + 1 =0
Also, find the roots for that value (s) of k in each case.
Sol :
(i)3kx² = 4(kx – 1)
⇒ 3kx² = 4kx – 4
⇒ 3kx² – 4kx + 4 = 0
Here a=3 k, b=-4 k, c=4
∴$\mathrm{D}=b^{2}-4 a c=(-4 k)^{2}-4 \times 3 k \times 4$
$=16 k^{2}-48 k$
∴Roots are equal
∴D=0
⇒ $\Rightarrow 16 k^{2}-48 k=0$
$\Rightarrow k^{2}-3 k=0 $
⇒ k(k-3)=0$
Either k=0
or k-3=0 then k=3
∴$x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-b}{2 a}$ (∵D=0)
$\frac{4 k}{2 \times 3 k}=\frac{4 \times 3}{2 \times 3 \times 3}=\frac{12}{18}=\frac{2}{3}$
∴$x=\frac{2}{3}, \frac{2}{3}$
(ii)
$(k+4) x^{2}+(k+1) x+1=0$
Here a=k+4, b=k+1, c=1
∴$\mathrm{D}=b^{2}-4 a c=(k+1)^{2}-4 \times(k+4) \times 1$
$=k^{2}+2 k+1-4 k-16=k^{2}-2 k-15$
∵Root are equal
∵$k^{2}-2 k-15=0$
$ \Rightarrow k^{2}-5 k+3 k-15=0$
⇒k(k-5)+3(k-5)=0
⇒(k-5)(k+3)=0
Either k-5=0, then k=5
or k+3=0, then k=-3
(a) When k=5, then
$x=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-b}{2 a}=\frac{-k-1}{2(k+4)}=\frac{-5-1}{2(5+4)}$
$=\frac{-6}{18}=\frac{-1}{3}$
∴$x=\frac{-1}{3}, \frac{-1}{3}$
(b) When k=-3, then
$x=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-b}{2 a}=\frac{-k-1}{2(k+4)}$
$=\frac{(-3)-1}{2(-3+4)}=\frac{2}{2 \times 1}=1$
∴ x=1, 1
Find two natural numbers which differ by 3 and whose squares have the sum 117.
Sol :
Let first natural number = x
then second natural number = x + 3
According to the condition :
x² + (x + 3)² = 117
$\Rightarrow \quad x^{2}+x^{2}+6 x+9=117$
$\Rightarrow \quad 2 x^{2}+6 x+9-117=0$
$\Rightarrow \quad 2 x^{2}+6 x-108=0$
$\Rightarrow \quad x^{2}+3 x-54=0$ (dividing by 2)
$\Rightarrow \quad x^{2}+9 x-6 x-54=0$
⇒ x(x+9)-6(x+9)=0
⇒ (x+9)(x-6)=0
Either x+9=0, then x=-9, but it is not a natural number.
or x-6=0, then x=6
∴First natural number=6
and second number=6+3=9
Divide 16 into two parts such that the twice the square of the larger part exceeds the square of the smaller part by 164.
Sol :
Let larger part = x
then smaller part = 16 – x
(∵ sum = 16)
According to the condition
$2 x^{2}-(16-x)^{2}=164$
$\Rightarrow 2 x^{2}-\left(256-32 x+x^{2}\right)=164$
$\Rightarrow 2 x^{2}-256+32 x-x^{2}=164$
$\Rightarrow x^{2}+32 x-256-164=0$
$\Rightarrow x^{2}+32 x-420=0$
$ \Rightarrow x^{2}+42 x-10 x-420=0$
⇒ x(x+42)-10(x+42)=0
⇒ (x+42)(x-10)=0
Either x+42=0, then x=-42, but it is not possible
or x-10=0, then x=10
∴Largest part=10
and smaller part=16-10=6
Two natural numbers are in the ratio 3 : 4. Find the numbers if the difference between their squares is 175.
Sol :
Ratio in two natural numbers = 3 : 4
Let the numbers be 3x and 4x
According to the condition,
$(4 x)^{2}-(3 x)^{2}=175 $
$\Rightarrow 16 x^{2}-9 x^{2}=175$
$\Rightarrow 7 x^{2}=175 $
$\Rightarrow x^{2}=\frac{175}{7}=25=(\pm 5)^{2}$
∴x=5, -5
But x=-5 is not a natural number
∴x=5
∴Natural numbers are 3x, 4x
=3×5, 4×5=15 ,20
Two squares have sides A cm and (x + 4) cm. The sum of their areas is 656 sq. cm.Express this as an algebraic equation and solve it to find the sides of the squares.
Sol :
Side of first square = x cm .
and side of second square = (x + 4) cm
Now according to the condition,
$(x)^{2}+(x+4)^{2}=656$
$\Rightarrow x^{2}+ x^{2}+8 x+16-656$
$\Rightarrow 2 x^{2}+8 x+16-656=0$
$\Rightarrow 2 x^{2}+8 x-640=0$
$\Rightarrow x^{2}+4 x-320=0$ (Dividing by 2)
$\Rightarrow x^{2}+20 x-16 x-320=0$
$\Rightarrow x(x+20)-16(x+20)=0$
$\Rightarrow(x+20)(x-16)=0$
Either x+20=0, then x=-20 , but it not possible as it is negative
or x – 16 = 0 then x = 16
Side of first square = 16 cm
and side of second square = 16 + 4 – 4 = 20 cm
The length of a rectangular garden is 12 m more than its breadth. The numerical value of its area is equal to 4 times the numerical value of its perimeter. Find the dimensions of the garden.
Sol :
Let breadth = x m
then length = (x + 12) m
Area = l × b = x (x + 12) m²
and perimeter = 2 (l + b) = 2(x + 12 + x) = 2 (2x + 12) m
According to the condition.
x(x+12)=4 \times 2(2 x+12)
$\Rightarrow x^{2}+12 x=16 x+96 $
$\Rightarrow x^{2}+12 x-16 x-96=0$
$\Rightarrow x^{2}-4 x-96=0$
$ \Rightarrow x^{2}-12 x+8 x-96=0$
⇒x(x-12)+8(x-12)=0
⇒(x-12)(x+8)=0
Either x-12=0, then x=12 or x+8=0, then x=-8, but it is not possible as it is in negative.
∴ Breadth =12 m
and length =12+12=24 m
A farmer wishes to grow a 100 m² rectangular vegetable garden. Since he has with him only 30 m barbed wire, he fences three sides of the rectangular garden letting compound wall of his house act as the fourth side fence. Find the dimensions of his garden.
Sol :
Area of rectangular garden = 100 cm²
Length of barbed wire = 30 m
Let the length of the side opposite to wall = x
and length of other each side $=\frac{30-x}{2}$
According to the condition,
$\frac{x(30-x)}{2}=100$
$\Rightarrow x(30-x)=200$
$\Rightarrow 30 x-x^{2}=200 $
$\Rightarrow x^{2}-30 x+200=0$
$\Rightarrow x^{2}-20 x-10 x+200=0$
⇒x(x-20)-10(x-20)=0
⇒(x-20)(x-10)=0
Either x-20=0, then x=20
or x-10=0, then x=10
(i) If x=20 then side opposite to the wall =20m
and other side $\frac{30-20}{2}=\frac{10}{2}=5 \mathrm{~m}$
(ii) If x=10, then side opposite to wall
and other side $e=\frac{30-10}{2}=\frac{20}{2}$
=10 m
∴Sides are 20m, 5, or 10m, 10m
The hypotenuse of a right-angled triangle is 1 m less than twice the shortest side. If the third side is 1 m more than the shortest side, find the sides of the triangle.
Sol :
Let the length of shortest side = x m
Length of hypotenuse = 2x – 1
and third side = x + 1
Now according to the condition,
$(2 x-1)^{2}=(x)^{2}+(x+1)^{2}$
(By Pythagoras Theorem)
$\Rightarrow 4 x^{2}- 4 x+1=x^{2}+x^{2}+2 x+1$
$\Rightarrow 4 x^{2}-4 x+1-2 x^{2}-2 x-1=0$
$\Rightarrow 2 x^{2}-6 x=0$
$\Rightarrow x^{2}-3 x=0$ (Dividing by 2)
$\Rightarrow x(x-3)=0$
Either x=0, but it is not possible
or x-3=0, then x=3
∴Shortest side=3m
Hypotenuse=2×3-1=6-1=5
Third side =x+1=3+1=4
Hence sides are 3.4,5 (in m)
A wire ; 112 cm long is bent to form a right angled triangle. If the hypotenuse is 50 cm long, find the area of the triangle.
Sol :
Perimeter of a right angled triangle = 112 cm
Hypotenuse = 50 cm
∴ Sum of other two sides = 112 – 50 = 62 cm
Let the length of first side = x
and length of other side = 62 – x
$(x)^{2}+(62-x)^{2}=(50)^{2}$
(By Pythagoras Theorem)
$\Rightarrow x^{2}+3844-124 x+x^{2}=2500$
$\Rightarrow 2 x^{2}-124 x+3844-2500=0$
$\Rightarrow 2 x^{2}-124 x+1344=0$
$\Rightarrow x^{2}-62 x+672=0$
$\Rightarrow x^{2}-48 x-14 x+672=0$ (Dividing by 2)
⇒x(x-48) -14(x-48)=0
⇒(x-48)(x-14)=0
Either x-48=0, then x=48
or x-14=0, then x=14
(i) If x=48, then one side=48 cm
and other side=62-48=14 cm
(ii) If x=14, then one side =14 cm
and other side=62-14=48
Hence sides are 14 cm, 48 cm
Car A travels x km for every litre of petrol, while car B travels (x + 5) km for every litre of petrol.
(i) Write down the number of litres of petrol used by car A and car B in covering a distance of 400 km.
(ii) If car A uses 4 litres of petrol more than car B in covering 400 km. write down an equation, in A and solve it to determine the number of litres of petrol used by car B for the journey.
Sol :
Distance traveled by car A in one litre = x km
and distance traveled by car B in one litre = (x + 5) km
(i) Consumption of car A in covering 400 km
$=\frac{400}{x}$ litres and consumption of car B $=\frac{400}{x+5}$ litres.
(ii) According to the condition.
$\frac{400}{x}-\frac{400}{x+5}=4$
$\frac{400(x+5-x)}{x(x+5)}=4 $
$\Rightarrow \frac{400 \times 5}{x^{2}+5 x}=4$
$\Rightarrow \quad 2000=4 x^{2}+20 x$
$\Rightarrow \quad 4 x^{2}+20 x-2000=0$
$\Rightarrow \quad x^{2}+5 x-500=0$ (Dividing by 4)$
$\Rightarrow \quad x^{2}+25 x-20 x-500=0$
⇒ x(x+25)-20(x+25)=0
⇒ (x+25)(x-20)=0
Either x+25=0, then x=-25, but it is not possible as it is in negative. or x-20=0, then x=20
∴Petrol used by car B=20-4=16 litres
The speed of a boat in still water is 11 km/ hr. It can go 12 km up-stream and return downstream to the original point in 2 hours 45 minutes. Find the speed of the stream
Sol :
Speed of a boat in still water = 11 km/hr
Let the speed of stream = x km/hr.
Distance covered = 12 km.
Time taken = 2 hours 45 minutes
$=2 \frac{3}{4}=\frac{11}{4}$ hours
Now according to the condition
$\frac{12}{11-x}+\frac{12}{11+x}=\frac{11}{4}$
$\Rightarrow \frac{12(11+x+11-x)}{(11-x)(11+x)}=\frac{11}{4}$
$ \Rightarrow \frac{12 \times 22}{121-x^{2}}=\frac{11}{4}$
$\Rightarrow 1331-11 x^{2}=4 \times 12 \times 22=1056$
$\Rightarrow 1331-11 x^{2}=1056 $
$\Rightarrow 1331-1056-11 x^{2}=0$
$\Rightarrow-11 x^{2}+275=0$
$\Rightarrow x^{2}-25=0$ (Dividing by -11)$
$\Rightarrow(x+5)(x-5)=0$
Either x+5=0, then x=-5, but it is not possible as it is negative
or x-5=0, then x=5
Hence,speed of stream=5 km/hr
By selling an article for Rs. 21, a trader loses as much per cent as the cost price of the article. Find the cost price.
Sol :
S.P. of an article = Rs. 21
Let cost price = Rs. x
Then loss = x%
$\therefore$ S.P. $=\frac{\text { C.P. }(100-\text { Loss } \%)}{100}$
$21=\frac{x(100-x)}{100}$
$2100=100 x-x^{2}$
$ \Rightarrow x^{2}-100 x+2100=0$
$\Rightarrow x^{2}-30 x-70 x+2100=0$
⇒ x(x-30)-70(x-30)=0
⇒ (x-30)(x-70)=0
Either x-30=0, then x=30
or x-70=0, then x=70
∴Cost price=30 or 70
A man spent Rs. 2800 on buying a number of plants priced at Rs x each. Because of the number involved, the supplier reduced the price of each plant by Rupee 1.The man finally paid Rs. 2730 and received 10 more plants. Find x.
Sol :
Amount spent = Rs. 2800
Price of each plant = Rs. x
Reduced price = Rs. (x – 1)
No. of plants in first case $=\frac{2800}{x}$
No. of plants received in second case $=\frac{2800}{x}+10$
Amount paid=Rs 2730
According to the condition
$\left(\frac{2800}{x}+10\right)(x-1)=2730$
$\Rightarrow \quad \frac{(2800+10 x)(x-1)}{x}=2730$
$\Rightarrow \quad(2800+10 x)(x-1)=2730 x$
$\Rightarrow \quad 2800 x-2800+10 x^{2}-10 x=2730 x$
$\Rightarrow 10 x^{2}+2800 x-10 x-2730 x-2800=0$
$\Rightarrow \quad 10 x^{2}+60 x-2800=0$
$\Rightarrow \quad x^{2}+6 x-280=0$ (Dividing by $\left.10\right)$
$\Rightarrow \quad x^{2}+20 x-14 x-280=0$
⇒x(x+20)-14(x+20)=0
⇒(x+20)(x-14)=0
Either x+20=0, then x=-20
, but it is not possible as it is negative
or x-14=0, then x=14
Forty years hence, Mr. Pratap’s age will be the square of what it was 32 years ago. Find his present age.
Sol :
Let Partap’s present age = x years
40 years hence his age = x + 40
and 32 years ago his age = x – 32
According to the condition
$x+40=(x-32)^{2}$
$\Rightarrow x+40=x^{2}-64 x+1024$
$\Rightarrow x^{2}-64 x+1024-x-40=0$
$\Rightarrow x^{2}-65 x+984=0 $
$\Rightarrow x^{2}-24 x-41 x+984=0$
⇒ x(x-24)-41(x-24)=0
⇒ (x-24)(x-41)=0
Either x-24=0, then x=24 but it is not possible as it is less than 32
or x-41=0, then x=41
Hence present age=41 year
Comments
Post a Comment