ML Aggarwal Solution Class 10 Chapter 6 Factorization test
Test
Question 1
Find the remainder when $2 x^{3}-3 x^{2}+4 x+7$ is divided by
(i) x – 2
(ii) x + 3
(iii) 2x + 1
Sol :
$2 x^{3}-3 x^{2}+4 x+7$
(i) Let x – 2 = 0, then x = 2
Substituting value of x in f(x)
$f(2)=2(2)^{3}-3(2)^{2}+4(2)+7$
= 2 × 8 – 3 × 4 + 4 × 2 + 7
= 16 – 12 + 8 + 7 = 19
Remainder = 19
(ii) Let x + 3 = 0, then x = – 3
Substituting the value of x in f(x)
$\Rightarrow x=-\frac{1}{2}$
Now substituting the value of x in f(x)
$f\left(-\frac{1}{2}\right)=2\left(-\frac{1}{2}\right)^{3}-3\left(-\frac{1}{2}\right)^{2}+4\left(-\frac{1}{2}\right)+7$
$=2\left(-\frac{1}{8}\right)-3\left(\frac{1}{4}\right)+4\left(-\frac{1}{2}\right)+7$
$=-\frac{1}{4}-\frac{3}{4}-2+7$=-1-2+7=4
∴Remainder=4
Question 2
When $2 x^{3}-9 x^{2}+10 x-p$ is divided by (x + 1), the remainder is – 24.Find the value of p.
Sol :
Let x + 1 = 0 then x = -1
Substituting the value of x in f(x)
$f(x)=2 x^{3}-9 x^{2}+10 x-p$
$f(-1)=2(-1)^{3}-9(-1)^{2}+10(-1)-p$
=-2-9-10-p=-21-p
∵Remainder=-24
∴-21-p=-24
-p=-24+21=-3
∴p=3
Question 3
If (2x – 3) is a factor of $6 x^{2}+x+a$, find the value of a. With this value of a, factorise the given expression.
Sol :
Let 2x – 3 = 0 then 2x = 3
⇒ $ x=\frac{3}{2}$
Substituting the value of x in f(x)
$=\frac{27}{2}+\frac{3}{2}+a=\frac{30}{2}+a=15+a$
∴Remainder=0
∴15+a=0
a=-15
Now , f(x) will be $6 x^{2}+x-15$
Dividing $6 x^{2}+x-15$ by 2x-3, we get
Figure to be added
$\therefore 6 x^{2}+x-15=(2 x-3)(3 x+5)$
Question 4
When $3 x^{2}-5 x+p$ is divided by (x – 2), the remainder is 3. Find the value of p. Also factorise the polynomial $3 x^{2}-5 x+p-3$
Sol :
$f(x)=3 x^{2}-5 x+p$
Let (x – 2) = 0, then x = 2
$f(2)=3(2)^{2}-5(2)+p$
= 3×4–10+p
=12–10+p
=2+p
∵Remainder=3
∴2+p=3
p=3-2=1
Hence p=1
Now, f(x)$=3 x^{2}-5 x+p-3$
Dividing by (x-2), we get
Figure to be added
$3 x^{2}-5 x-2=(x-2)(3 x+1)$
Question 5
Prove that (5x + 4) is a factor of $5 x^{3}+4 x^{2}-5 x-4$. Hence factorize the given polynomial completely.
Sol :
$f(x)=5 x^{3}+4 x^{2}-5 x-4$
Let 5x + 4 = 0, then 5x = -4
$\therefore f\left(-\frac{4}{5}\right)=5\left(-\frac{4}{5}\right)^{3}+4\left(-\frac{4}{5}\right)^{2}-5\left(-\frac{4}{5}\right)-4$
$=\cdot 5 \times\left(-\frac{64}{125}\right)+4 \times \frac{16}{25}+4-4$
$=-\frac{64}{25}+\frac{64}{25}+4-4=0$
$\because f\left(-\frac{4}{5}\right)=0$
∴(5x+4) is a factor f(x)
Now dividing f(x) by 5 x+4, we get
$5 x^{3}+4 x^{2}-5 x-4$
$=(5 x+4)\left(x^{2}-1\right)=(5 x+4)\left\{(x)^{2}-(1)^{2}\right\}$
=(5 x+4)(x+1)(x-1)
Figure to be added
Question 6
Use factor theorem to factorise the following polynomials completely:
(i) $4 x^{3}+4 x^{2}-9 x-9$
(ii) $x^{3}-19 x-30$
Sol :
(i) $f(x)=4 x^{3}+4 x^{2}-9 x-9$
Let x = -1, then
$f(-1)=4(-1)^{3}+4(-1)^{2}-9(-1)-9$
=4(-1)+4(1)+9-9
=-4+4+9-9
=13-13=0
∴(x+1) is a factor of f(x)
Now dividing f(x) by x+1, we get
$f(x)=4 x^{3}+4 x^{2}-9 x-9$
$=(x+1)\left(4 x^{2}-9\right)$
$=(x+1)\left\{(2 x)^{2}-(3)^{2}\right\}$
=(x+1)(2 x+3)(2 x-3)
Figure to be added
(ii) $f(x)=x^{3}-19 x-30$
Let x=-2, then
$f(-2)=(-2)^{3}-19(-2)-30$
=-8+38-30=38-38=0
∴(x+2) is a factor of f(x)
Now dividing f(x) by (x+2), we get
$f(x)=x^{3}-19 x-30$
$=(x+2)\left(x^{2}-2 x-15\right)=(x+2)\left\{\left(x^{2}-5 x+3 x-15\right\}\right.$
$=(x+2)\{x(x-5)+3(x-5)\}$
$=(x+2)(x-5)(x+3)$
Figure to be added
Question 7
If $x^{3}-2 x^{2}+p x+q$ has a factor (x + 2) and leaves a remainder 9, when divided by (x + 1), find the values of p and q. With these values of p and q, factorize the given polynomial completely.
Sol :
$f(x)=x^{3}-2 x^{2}+p x+q$
(x + 2) is a factor
$f(-2)=(-2)^{3}-2(-2)^{2}+p(-2)+q$
$=-8-2 \times 4-2 p+q$
=-8-8-2p+q
=-16-2 p+q
∵(x+2) is a factor of f(x)
∴f(-2)=0
$\Rightarrow-16-2 p+q=0$
$\Rightarrow \quad 2 p-q=-16$..(i)
Again, let x+1=0, then x=-1
$\therefore f(-1)=(-1)^{3}-2(-1)^{2}+p(-1)+q$
$=-1-2 \times 1-p+q=-1-2-p+q=-3-p+q$
∵Remainder=9, then
-3-p+q=9
$\Rightarrow -p+q=9+3=12$
-p+q=12...(ii)
Adding (i) and (ii)
p=-4
Substituting the value of p in (ii)
-(-4)+q=12
4+q=12
⇒ q=12-4=8
∴p=p=-4, q=8
∴$f(x)=x^{3}-2 x^{2}-4 x+8$
Dividing f(x) by (x+2), we get
$f(x)=(x+2)\left(x^{2}-4 x+4\right)$
$=(x+2)\left\{(x)^{2}-2 \times x(-2)+(2)^{2}\right\}$
$=(x+2)(x-2)^{2}$
Figure to be added
Question 8
If (x + 3) and (x – 4) are factors of $x^{3}+a x^{2}-b x+24$, find the values of a and b: With these values of a and b, factorise the given expression.
Sol :
$f(x)=x^{3}+a x^{2}-b x+24$
Let x + 3 = 0, then x = -3
Substituting the value of x in f(x)
=-27+9 a+3 b+24
=9 a+3 b-3
∵x+3 is a factor
∴Remainder=0
∴9a+3b-3=0
⇒3a+b-1=0 (dividing by 3)
⇒3a+b=1..(i)
Again, let x-4=0, then x=4
Substituting the value of x in f(x)
$f(x)=(4)^{3}+a(4)^{2}-b(4)+24$
=64+16a-4b+24
=16a-4b+88
∵x-4 is a factor
∴Remainder=0
16a-4b+88=0
⇒16a-4b=-88 (dividing by 4)
⇒4a-b=-2..(ii)
Adding (i) and (ii)
7a=-21
⇒a=-3
Substituting the value of a in (i)
3(-3)+b=1
⇒-9+b=1
⇒b=1+9=10
∴a=-3, b=10
Now , f(x) will be
$f(x)=x^{3}-3 x^{2}-10 x+24$
∵x+3 and x-4 are factors of f(x)
∴Dividing f(x) by (x+3)(x-4)
or $x^{2}-x-12$
Figure to be added
$x^{3}-3 x^{2}-10 x+24$
$=\left(x^{2}-x-12\right)(x-2)$
=(x+3)(x-4)(x-2)
Question 9
If $2 x^{3}+a x^{2}-11 x+b$ leaves remainder 0 and 42 when divided by (x – 2) and (x – 3) respectively, find the values of a and b. With these values of a and b, factorize the given expression.
Sol :
$f(x)=2 x^{3}+a x^{2}-11 x+b$
Let x – 2 = 0, then x = 2,
Substituting the value of x in f(x)
=2×8+4a-22+b
=16+4a-22+b
=4a+b-6
∵Remainder=0
∴4a+b-6=0
⇒4a+b=6..(i)
Again, let x-3=0, then x=3
Substituting the value of x in f(x)
$f(3)=2(3)^{3}+a(3)^{2}-11 \times 3+b$
=2×27+9a-33+b
=54+9a-33+b
⇒9a+b+21
∵Remainder=42
∴9a+b+21=42
⇒9a+b=42-21
⇒9a+b=21..(ii)
Subtracting (i) from (ii)
5a=15
$\Rightarrow a=\frac{15}{5}=3$
Substituting the value of a in (i)
4(3)+b=6
12+b=6
b=6-12
b=-6
∴f(x) will be $2 x^{3}+3 x^{2}-11 x-6$
∵x-2 is a factor (as remainder=0)
∴Dividing f(x) by x-2, we get
Figure to be added
$\therefore 2 x^{3}+3 x^{2}-11 x-6$
$=(x-2)\left(2 x^{2}+7 x+3\right)$
$=(x-2)\left[2 x^{2}+6 x+x+3\right]$
=(x-2)[2x(x+3)+1(x+3)]
=(x-2)(x+3)(2x+1)
Question 10
If (2x + 1) is a factor of both the expressions $2 x^{2}-5 x+p$ and $2 x^{2}+5 x+ q$, find the value of p and q. Hence find the other factors of both the polynomials.
Sol :
Let 2x + 1 = 0, then 2x = -1
Substituting the value of x in
$f(x)=2 x^{2}-5 x+p$
$f\left(-\frac{1}{2}\right)=2\left(\frac{-1}{2}\right)^{2}-5\left(\frac{-1}{2}\right)+p$
$=2 \times \frac{1}{4}+\frac{5}{2}+p$
$=\frac{1}{2}+\frac{5}{2}+p$
=3+p
∵2x+1 is the factor of p(x)
∴Remainder=0
⇒3+p=0
⇒p=-3
Again, substituting the value of x in q(x)
$q(x)=2 x^{2}+5 x+q$
$q\left(-\frac{1}{2}\right)=2\left(-\frac{1}{2}\right)^{2}+5\left(-\frac{1}{2}\right)+q=2 \times \frac{1}{4}-\frac{5}{2}+q$
$=\frac{1}{2}-\frac{5}{2}+q=-\frac{4}{2}+q=q-2$
∵2x+1 is the factor of q(x)
∴Remainder=0
⇒q-2=0
⇒q=2
Hence, p=-3, q=2
Now (i) ∵2x+1 is the factor of p(x)
$=2 x^{2}-5 x-3$
∴Dividing p(x) by 2x+1,
Figure to be added
$\therefore 2 x^{2}-5 x-3=(2 x+1)(x-3)$
(ii) ∵ 2x+1 is the factor of $q(x)=2 x^{2}+5 x+2$
∴Dividing q(x) by 2x+1,
Figure to be added
$\therefore 2 x^{2}+5 x+2$
=(2 x+1)(x+2)
Question 11
When a polynomial f(x) is divided by (x – 1), the remainder is 5 and when it is,, divided by (x – 2), the remainder is 7. Find – the remainder when it is divided by (x – 1) (x – 2).
When f(x) is divided by (x – 1),
Remainder = 5
Let x – 1 = 0 ⇒ x = 1
Let x-2=0
x=2
∴f(x)=(x-1)(x-2)q(x)+ax+b
Where q(x) is the quotient and ax+b is remainder
Putting x=1, we get,
f(1)=(1-1)(1-2)q(1)+a×1+b
=0+a+b
=a+b
and x=2, then
f(1)=(1-1)(1-2) q(1)+a×1+b
=0+a+b=a+b
∴a+b=5..(i)
2a+b=7..(ii)
Subtracting , we get
-a=-2
a=2
Subtracting the value of a in (5)
2+b=5
⇒b=5-2=3
∴a=2, b=3
∴Remainder=ax+b
=2x+3
Comments
Post a Comment