ML Aggarwal Solution Class 10 Chapter 7 Ratio and Proportion Test
Test
Question 1
Find the compound ratio of:
Sol :
$(a+b)^{2}:(a-b)^{2}$
$\left(a^{2}-b^{2}\right):\left(a^{2}+b^{2}\right)$
$\left(a^{4}-b^{4}\right):(a+b)^{4}$
$=\frac{(a+b)^{2}}{(a-b)^{2}} \times \frac{a^{2}-b^{2}}{a^{2}+b^{2}} \times \frac{a^{4}-b^{4}}{(a+b)^{4}}$
$=\frac{(a+b)^{2}}{(a-b)^{2}} \times \frac{(a+b)(a-b)}{a^{2}+b^{2}}\times \frac{\left(a^{2}+b^{2}\right)(a+b)(a-b)}{(a+b)^{4}}$
$=\frac{1}{1}$ = 1 : 1
Question 2
If (7 p + 3 q) : (3 p – 2 q) = 43 : 2 find p : q
Sol :
(7p + 3q) : (3p – 2q) = 43 : 2
$\Rightarrow \quad 129 p-86 q=14 p+6 q$
$\Rightarrow \quad 129 p-14 p=6 q+86 q$
$\Rightarrow \quad 115 p=92 q$
$\Rightarrow \quad \frac{p}{q}=\frac{92}{115}=\frac{4}{5}$
∴p : q= 4 : 5
Question 3
If a : b = 3 : 5, find (3a + 5b): (7a – 2b).
Sol :
a : b = 3 : 5
⇒ 3a + 5n : 7a – 2b
Dividing each term by b
$\Rightarrow 3 \times \frac{3}{5}+5: 7 \times \frac{3}{5}-2$
$\Rightarrow\left(\frac{9}{5}+5\right):\left(\frac{21}{5}-2\right)$
$\Rightarrow \frac{9+25}{5}: \frac{21-10}{5}$
$\Rightarrow \frac{34}{5}: \frac{11}{5}$
=34:11
Question 4
The ratio of the shorter sides of a right angled triangle is 5 : 12. If the perimeter of the triangle is 360 cm, find the length of the longest side.
Sol :
Let the two shorter sides of a right-angled triangle be 5x and 12x.
Third (longest side)
But 5x+12x+13x=360cm
⇒30x=360
$\Rightarrow x=\frac{360}{30}=12$
∴Length of the longest side=13x
=13×12cm=156cm
Question 5
The ratio of the pocket money saved by Lokesh and his sister is 5 : 6. If the sister saves Rs 30 more, how much more the brother should save in order to keep the ratio of their savings unchanged?
Sol :
Let the savings of Lokesh and his sister are 5x and 6x.
and the Lokesh should save Rs y more Now, according to the problem,
$\therefore y=\frac{150}{6}=25$
Hence, Lokesh should save 25 more
Question 6
In an examination, the number of those who passed and the number of those who failed were in the ratio of 3 : 1. Had 8 more appeared, and 6 less passed, the ratio of passed to failures would have been 2 : 1. Find the number of candidates who appeared.
Sol :
Let number of passed = 3 x
and failed = x
Total candidates appeared = 3x + x = 4x.
In second case
No. of candidates appeared = 4 x + 8
and No. of passed = 3 x – 6
and failed = 4x + 8 – 3x + 6 = x + 14
then ratio will be = 2 : 1
Now according to the condition
⇒ 3x-6=2x+28
⇒ 3x-2x=28+6
⇒ x=34
∴No. of candidates appeared
=4x=4×34=136
Question 7
What number must be added to each of the numbers 15, 17, 34 and 38 to make them proportional ?
Sol :
Let x be added to each number, then numbers will be
15 + x, 17 + x, 34 + x, and 38 + x.
Now according to the condition
$\Rightarrow(15+x)(38+x)=(34+x)(17+x)$
$\Rightarrow 570+53 x+x^{2}=578+51 x+x^{2}$
$\Rightarrow x^{2}+53 x-x^{2}-51 x=578-570$
$\Rightarrow 2 x=8 \Rightarrow x=4$
$\therefore 4$ is to be added.
Question 8
If (a + 2 b + c), (a – c) and (a – 2 b + c) are in continued proportion, prove that b is the mean proportional between a and c.
Sol :
(a + 2 b + c), (a – c) and (a – 2 b + c) are in continued proportion
$\therefore \frac{a+2 b+c}{a-c}=\frac{a-c}{a-2 b+c}$
$\Rightarrow \quad(a+2 b+c)(a-2 b+c)=(a-c)^{2}$
$\Rightarrow \quad a^{2}-2 a b+a c+2 a b-4 b^{2}+2 b c+a c-2 b c+c^{2}=a^{2}-2 a c+c^{2}$
$\Rightarrow \quad a^{2}-2 a b+a c+2 a b-4 b^{2}+2 b c+a c-2 b c+c^{2}-a^{2}+2 a c-c^{2}=0$
$\Rightarrow \quad 4 a c-4 b^{2}=0 \Rightarrow a c-b^{2}=0$
$\Rightarrow \quad b^{2}=a c$
Here b is the mean proportional between a and c
Question 9
If 2, 6, p, 54 and q are in continued proportion, find the values of p and q.
Sol :
2, 6, p, 54 and q are in continued proportional then
(i) $\because \frac{2}{6}=\frac{6}{p}$ then
2p=36
$ \Rightarrow p=18$
(ii) $\frac{p}{54}=\frac{54}{q} \Rightarrow p q=54 \times 54$
$\Rightarrow 18 q=54 \times 54 $
$\Rightarrow q=\frac{54 \times 54}{18}=162$
Hence , p=18, q=162
Question 10
If a, b, c, d, e are in continued proportion, prove that: $a: e=a^{4}: b^{4}$
Sol :
a, b, c, d, e are in continued proportion
$d=e k, c=e k^{2}, b=e k^{3}$ and $a=e k^{4}$
Now, $\mathrm{L.H.S.}=\frac{a}{e}=\frac{e k^{4}}{e}=k^{4}$
R.H.S $\frac{a^{4}}{b^{4}}=\frac{\left(e k^{4}\right)^{4}}{\left(e k^{3}\right)^{4}}=\frac{e^{4} k^{16}}{e^{4} k^{12}}$
$=k^{16-12}=k^{4}$
∴L.H.S=R.H.S
Question 11
Find two numbers whose mean proportional is 16 and the third proportional is 128.
So :
Let x and y be two numbers
Their mean proportion = 16
and third proportion = 128
$\Rightarrow x=\frac{256}{y}$...(i)
and $\frac{y^{2}}{x}=128 \Rightarrow x=\frac{y^{2}}{128}$...(ii)
From (i) and (ii)
$\frac{256}{y}=\frac{y^{2}}{128} $
$\Rightarrow y^{3}=256 \times 128=32768$
$\Rightarrow y^{3}=(32)^{3} \Rightarrow y=32$
$\therefore x=\frac{256}{y}=\frac{256}{32}=8$
$\therefore$ Numbers are 8,32
Question 12
If q is the mean proportional between p and r, prove that:
Sol :
q is mean proportional between p and r
q² = pr
$=\left(q^{2}\right)^{2}\left(\frac{1}{p^{2}}-\frac{3}{q^{2}}+\frac{1}{r^{2}}\right)=(p r)^{2}\left(\frac{1}{p^{2}}-\frac{3}{q^{2}}+\frac{1}{r^{2}}\right)$
$=(p r)^{2}\left(\frac{1}{p^{2}}-\frac{3}{p r}+\frac{1}{r^{2}}\right)$
$=p^{2} r^{2}\left(\frac{r^{2}-3 p r+p^{2}}{p^{2} r^{2}}\right)=r^{2}-3 p r+p^{2}$
∴L.H.S=R.H.S
Question 13
If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$ , prove that each ratio is
(i) $\sqrt{\frac{3 a^{2}-5 c^{2}+7 e^{2}}{3 b^{2}-5 d^{2}+7 t^{2}}}$
(ii) $\left[\frac{2 a^{3}+5 c^{3}+7 e^{3}}{2 b^{3}+5 d^{3}+7 f^{3}}\right]^{\frac{1}{3}}$
Sol :
$\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=k(\mathrm{say})$
∴ a = k, c = dk, e = fk
Question 14
Question 15
$=\frac{(a k+b k)^{4}+(a+b)^{4}}{(a k+b k)^{3}+(a+b)^{3}}$
$=\frac{k^{4}(a+b)^{4}+(a+b)^{4}}{k^{3}(a+b)^{3}(a+b)^{3}}=\frac{(a+b)^{4}\left(k^{4}+1\right)}{(a+b)^{3}\left(k^{3}+1\right)}$
$=\frac{(a+b)\left(k^{4}+1\right)}{k^{3}+1}=\frac{\left(k^{4}+1\right)(a+b)}{k^{3}+1}$
Question 16
If $\frac{x}{b+c-a}=\frac{y}{c+a-b}=\frac{z}{a+b-c}$ prove that each ratio’s equal to :
Sol :
$\frac{x}{b+c-a}=\frac{y}{c+a-b}=\frac{z}{a+b-c}=k($ say $)$
x = k(b + c – a),
y = k(c + a – b),
z = k(a + b – c)
$=\frac{k(b+c-a)+k(c+a-b)+k(a+b-c)}{a+b+c}$
$=\frac{k(b+c-a+c+a-b+a+b-c)}{a+b+c}$
$=\frac{k(a+b+c)}{a+b+c}=k$
Hence proved
Question 17
If a : b = 9 : 10, find the value of
Sol :
a : b = 9 : 10
$=\frac{5 \times \frac{9}{10}+3}{5 \times \frac{9}{10}-3}$
$=\frac{\frac{9}{2}+3}{\frac{9}{2}-3}$
$=\frac{\frac{15}{2}}{\frac{3}{2}}$
(Substituting the value of $\frac{a}{b}$)
$=\frac{15}{2} \times \frac{2}{3}=5$
(ii) \frac{2 a^{2}-3 b^{2}}{2 a^{2}+3 b^{2}}$
$=\frac{\frac{2 a^{2}}{b^{2}}-\frac{3 b^{2}}{b^{2}}}{\frac{2 a^{2}}{b^{2}}-\frac{3 b^{2}}{h^{2}}}
(Dividing by $b^{2}$)
=\frac{2\left(\frac{a}{b}\right)^{2}-3}{2\left(\frac{a}{b}\right)^{2}+3}$
$=\frac{2\left(\frac{9}{10}\right)^{2}-3}{2\left(\frac{9}{10}\right)^{2}+3}
$=\frac{2 \times \frac{81}{100}-3}{2 \times \frac{81}{100}+3}$
$=\frac{\frac{81}{50}-3}{\frac{81}{50}+3}$
$=\frac{\frac{81-150}{50}}{\frac{81+150}{50}}$
$=\frac{-69}{50} \times \frac{50}{231}=\frac{-69}{231}=\frac{-23}{77}$
Question 18
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of $\frac{3 x^{4}+25 y^{4}}{3 x^{4}-25 y^{4}}$
Sol :
$\frac{3 x^{4}+25 y^{4}}{3 x^{4}-25 y^{4}}=\frac{11}{9}$
Applying componendo and dividendo
$\Rightarrow \frac{6 x^{2}}{4 y^{2}}=\frac{20}{2}$
$ \Rightarrow \frac{3}{2} \frac{x^{2}}{y^{2}}=10$
$\Rightarrow \frac{x^{2}}{y^{2}}=10 \times \frac{2}{3}=\frac{20}{3}$
$\frac{3 x^{4}+25 y^{4}}{3 x^{4}-25 y^{4}}$
$=\frac{\frac{3 x^{4}}{y^{4}}+\frac{25 y^{4}}{y^{4}}}{\frac{3 x^{4}}{y^{4}}-\frac{25 y^{4}}{y^{4}}}$
$=\frac{3\left(\frac{x^{2}}{y^{2}}\right)^{2}+25}{3\left(\frac{x^{2}}{y^{2}}\right)^{2}-25}$
$=\frac{3 \times\left(\frac{20}{3}\right)^{2}+25}{3\left(\frac{20}{3}\right)^{2}-25}$
$=\frac{3 \times \frac{400}{9}+25}{3 \times \frac{400}{9}-25}$
$=\frac{\frac{400}{3}+\frac{25}{1}}{\frac{400}{3}-\frac{25}{1}}$
$=\frac{\frac{400+75}{3}}{\frac{400-75}{3}}$
$=\frac{475}{3} \times \frac{3}{325}=\frac{19}{13}$
Question 19
If $x=\frac{2 m a b}{a+b}$ , find the value of
Sol :
$x=\frac{2 m a b}{a+b}$
$\Rightarrow \frac{x}{m a}+\frac{2 b}{a+b}$
Applying componendo and dividendo
$=\frac{2 a-2 b}{a-b}=\frac{2(a-b)}{a-b}=2$
Question 20
If $x=\frac{p a b}{a+b},$ prove that $\frac{x+p a}{x-p a}-\frac{x+p b}{x-p b}=\frac{2\left(a^{2}-b^{2}\right)}{a b}$
Sol :
$x=\frac{p a b}{a+b}$
$\Rightarrow \frac{x}{p a}+\frac{b}{a+b}$
Applying componendo and dividendo
Again $\frac{x}{p b}=\frac{a}{a+b}$
Applying componendo and dividendo,
$\frac{x+p b}{x-p b}=\frac{a+a+b}{a-a-b}=\frac{2 a+b}{-b}$..(ii)
$\mathrm{L.H.S.}=\frac{x+p a}{x-p a}-\frac{x+p b}{x-p b}$
$=\frac{a+2 b}{-a}-\frac{2 a+b}{-b}$
$=\frac{a+2 b}{-a}+\frac{2 a+b}{b}$
$=\frac{a b+2 b^{2}-2 a^{2}-a b}{-a b}$
$=\frac{2 b^{2}-2 a^{2}}{-a b}$
$=\frac{-2 a^{2}+2 b^{2}}{-a b}$
$=\frac{-2\left(a^{2}-b^{2}\right)}{-a b}=\frac{2\left(a^{2}-b^{2}\right)}{a b}$
=R.H.S
Question 21
Find x from the equation $\frac{a+x+\sqrt{a^{2}-x^{2}}}{a+x-\sqrt{a^{2}-x^{2}}}=\frac{b}{x}$
Sol :
$\frac{a+x+\sqrt{a^{2}-x^{2}}}{a+x-\sqrt{a^{2}-x^{2}}}=\frac{b}{x}$
Applying componendo and dividendo,
$=\frac{b+x}{b-x} $
$\Rightarrow \frac{2(a+x)}{2 \sqrt{a^{2}-x^{2}}}=\frac{b+x}{b-x}$
$\Rightarrow \frac{a+x}{\sqrt{a^{2}-x^{2}}}=\frac{b+x}{b-x}$
Squaring both sides,
$\frac{(a+x)^{2}}{a^{2}-x^{2}}=\frac{(b+x)^{2}}{(b-x)^{2}}$
$\Rightarrow \frac{(a+x)^{2}}{(a+x)(a-x)}=\frac{(b+x)^{2}}{(b-x)^{2}}$
$\Rightarrow \frac{a+x}{a-x}=\frac{(b+x)^{2}}{(b-x)^{2}}$
Again applying componendo and dividendo,
$\frac{a+x+a-x}{a+x-a+x}=\frac{(b+x)^{2}+(b-x)^{2}}{(b+x)^{2}-(b-x)^{2}}$
$\Rightarrow \frac{2 a}{2 x}=\frac{2\left(b^{2}+x^{2}\right)}{4 b x}$
$ \Rightarrow \frac{a}{x}=\frac{b^{2}+x^{2}}{2 b x}$
$\Rightarrow \frac{2 a}{2 x}=\frac{2\left(b^{2}+x^{2}\right)}{4 b x}$
$ \Rightarrow \frac{a}{x}=\frac{b^{2}+x^{2}}{2 b x}$
$\Rightarrow x^{2}=2 a b-b^{2}$
$x=\sqrt{2 a b-b^{2}}$
Question 22
If $x=\frac{\sqrt[3]{a+1}+\sqrt[3]{a-1}}{\sqrt[3]{a+1}-\sqrt[3]{a-1}},$ prove that
$x^{3}-3 a x^{2}+3 x-a=0$
Sol :
$x=\frac{\sqrt[3]{a+1}+\sqrt[3]{a-1}}{\sqrt[3]{a+1}-\sqrt[3]{a-1}}$
Applying componendo and dividendo,
$\frac{x+1}{x-1}=\frac{2 \sqrt[3]{a+1}}{2 \sqrt[3]{a-1}}$
$ \Rightarrow \frac{x+1}{x-1}=\frac{\sqrt[3]{a+1}}{\sqrt[3]{a-1}}$
Cubing both sides
$\frac{(x+1)^{3}}{(x-1)^{3}}=\frac{a+1}{a-1}$
Again applying componendo and dividendo,
$\frac{(x+1)^{3}+(x-1)^{3}}{(x+1)^{3}-(x-1)^{3}}=\frac{a+1+a-1}{a+1-a+1}$
$\Rightarrow \frac{2\left(x^{3}+3 x\right)}{2\left(3 x^{2}+1\right)}=\frac{2 a}{2}$
$ \Rightarrow \frac{x^{3}+3 x}{3 x^{2}+1}=\frac{a}{1}$
$\Rightarrow x^{3}+3 x=3 a x^{2}+a $
$\Rightarrow x^{3}-3 a x^{2}+3 x-a=0$
Question 23
If $\frac{b y+c z}{b^{2}+c^{2}}=\frac{c z+a x}{c^{2}+a^{2}}=\frac{a x+b y}{a^{2}+b^{2}}$, prove that each of these ratio is equal to
Sol :
$\frac{b y+c z}{b^{2}+c^{2}}=\frac{c z+\alpha x}{c^{2}+a^{2}}=\frac{a x+b y}{a^{2}+b^{2}}$
$=\frac{2(a x+b y+c z)}{2\left(a^{2}+b^{2}+c^{2}\right)}=\frac{a x+b y+c z}{a^{2}+b^{2}+c^{2}}$ (Adding)
Now $\frac{b y+c z}{b^{2}+c^{2}}=\frac{a x+b y+c z}{a^{2}+b^{2}+c^{2}}$
$\Rightarrow \frac{b y+c z}{a x+b y+c z}=\frac{b^{2}+c^{2}}{a^{2}+b^{2}+c^{2}}$ (By alternendo)
$\Rightarrow \frac{b y+c z-a x-b y-c z}{a x+b y+c z}$
$=\frac{b^{2}+c^{2}-a^{2}-b^{2}-c^{2}}{a^{2}+b^{2}+c^{2}}$
$\Rightarrow \frac{-a x}{a x+b y+c z}=\frac{-a^{2}}{a^{2}+b^{2}+c^{2}}$
$\Rightarrow \frac{x}{a x+b y+c z}=\frac{a}{a^{2}+b^{2}+c^{2}}$
$\Rightarrow \frac{x}{a}=\frac{a x+b y+c z}{a^{2}+b^{2}+c^{2}}$ ..(i)
Similarly we can prove that
$\frac{y}{b}=\frac{a x+b y+c z}{a^{2}+b^{2}+c^{2}}$..(ii)
and $\frac{z}{c}=\frac{a x+b y+c z}{a^{2}+b^{2}+c^{2}}$...(iii)
From (i), (ii) and (iii)
Hence $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}$
Comments
Post a Comment